cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Iwan Duursma

Iwan Duursma's wiki page.

Iwan Duursma has authored 2 sequences.

A002248 Number of points on y^2 + xy = x^3 + x^2 + x over GF(2^n).

Original entry on oeis.org

2, 8, 14, 16, 22, 56, 142, 288, 518, 968, 1982, 4144, 8374, 16472, 32494, 65088, 131174, 263144, 525086, 1047376, 2094358, 4193912, 8393806, 16783200, 33550022, 67092488, 134210174, 268460656, 536911222
Offset: 1

Keywords

Comments

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). The point at infinity is counted also. - T. D. Noe, Mar 12 2009

Programs

  • Magma
    I:=[2, 8, 14, 16]; [n le 4 select I[n] else 4*Self(n-1)-7*Self(n-2)+8*Self(n-3)-4*Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 18 2012
    
  • Mathematica
    Needs["FiniteFields`"]; Table[cnt=1; (* 1 point at infinity *) f=Table[GF[2,n][IntegerDigits[i,2,n]], {i,0,2^n-1}]; Do[If[y^2+x*y-x^3-x^2-x==0, cnt++ ], {x,f}, {y,f}]; cnt, {n,6}] (* T. D. Noe, Mar 12 2009 *)
    LinearRecurrence[{4,-7,8,-4},{2,8,14,16},30] (* Vincenzo Librandi, Jun 18 2012 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -4,8,-7,4]^(n-1)*[2;8;14;16])[1,1] \\ Charles R Greathouse IV, Jun 23 2020

Formula

a(n) = 2^n + 1 - b(n); b(n) = b(n-1) - 2*b(n-2), b(1)=1, b(2)=-3; b(n) = A002249(n).
G.f.: -2*x*(-1+2*x^2) / ( (x-1)*(2*x-1)*(2*x^2 - x + 1) ).
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4). - Vincenzo Librandi, Jun 18 2012

A002249 a(n) = a(n-1) - 2*a(n-2) with a(0) = 2, a(1) = 1.

Original entry on oeis.org

2, 1, -3, -5, 1, 11, 9, -13, -31, -5, 57, 67, -47, -181, -87, 275, 449, -101, -999, -797, 1201, 2795, 393, -5197, -5983, 4411, 16377, 7555, -25199, -40309, 10089, 90707, 70529, -110885, -251943, -30173, 473713, 534059, -413367, -1481485
Offset: 0

Keywords

Comments

4*2^n = A002249(n)^2 + 7*A001607(n)^2. See A077020, A077021.
Among presented initial elements of the sequence a(n), the maximal increasing or decreasing subsequences have length either 3 or 4. - Roman Witula, Aug 21 2012
This is the Lucas Sequence V_n(P, Q) = V_n(1, 2). U_n(1, 2) = A107920(n). - Raphie Frank, Dec 25 2013
The only numbers that occur more than once are 1=a(1)=a(4) and -5=a(3)=a(9). See Noam D. Elkies's posting in the Mathematics Stack Exchange link. - Robert Israel, Dec 21 2016

Examples

			We have a(2)-a(7) = a(5)-a(4) = a(6)+a(4) = a(11)-a(10) = a(12)+a(10)=10. Further the following relations: ((1+i*sqrt(7))/2)^4 + ((1-i*sqrt(7))/2)^4 = 1 and ((1+i*sqrt(7))/2)^8 + ((1-i*sqrt(7))/2)^8 = -31. - _Roman Witula_, Aug 21 2012
G.f. = 2 + x - 3*x^2 - 5*x^3 + x^4 + 11*x^5 + 9*x^6 - 13*x^7 - 31*x^8 + ...
From _Raphie Frank_, Dec 05 2015: (Start)
V_n(1, 2) = a(1*n) = ((a(1) + sqrt(-7))/2)^n + ((a(1) - sqrt(-7))/2)^n; a(1) = 1.
V_n(-3, 4) = a(2*n) = ((a(2) + sqrt(-7))/2)^n + ((a(2) - sqrt(-7))/2)^n; a(2) = -3.
V_n(-5, 8) = a(3*n) = ((a(3) + sqrt(-7))/2)^n + ((a(3) - sqrt(-7))/2)^n; a(3) = -5.
V_n(11, 32) = a(5*n) = ((a(5) + sqrt(-7))/2)^n + ((a(5) - sqrt(-7))/2)^n; a(5) = 11.
V_n(-181, 8192) = a(13*n) = ((a(13) + sqrt(-7))/2)^n + ((a(13) - sqrt(-7))/2)^n; a(13) = -181.
(End)
		

Crossrefs

Programs

  • Magma
    I:=[2,1]; [n le 2 select I[n] else Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Nov 29 2015
    
  • Maple
    A002249 := proc(n) option remember; >if n = 1 then 1 elif n = 2 then -3 else A002249(n-1>)-2*A002249(n-2); fi; end;
  • Mathematica
    LinearRecurrence[{1,-2}, {2,1}, 50] (* Roman Witula, Aug 21 2012 *)
    a[ n_] := 2^(n/2) ChebyshevT[ n, 8^(-1/2)] 2; (* Michael Somos, Jun 02 2014 *)
    a[ n_] := 2^Min[0, n] SeriesCoefficient[ (2 - x) / (1 - x + 2 x^2), {x, 0, Abs @ n}]; (* Michael Somos, Jun 02 2014 *)
    Table[2 Re[((1 + I Sqrt[7])/2)^n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2017 *)
  • PARI
    {a(n) = if( n<0, 2^n * a(-n), polsym(2 - x + x^2, n)[n+1])}; /* Michael Somos, Jun 02 2014 */
    
  • PARI
    {a(n) = 2 * real( ((1 + quadgen(-28)) / 2)^n )}; /* Michael Somos, Jun 02 2014 */
    
  • PARI
    x='x+O('x^100); Vec((2-x)/(1-x+2*x^2)) \\ Altug Alkan, Dec 04 2015
    
  • Python
    from sympy import sqrt, re, I
    def a(n): return 2*re(((1 + I*sqrt(7))/2)**n)
    print([a(n) for n in range(40)]) # Indranil Ghosh, Jun 02 2017
  • Sage
    [lucas_number2(n,1,2) for n in range(0, 40)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (2-x)/(1-x+2x^2). - Michael Somos, Oct 18 2002
a(n) = trace(A^n) for the square matrix A=[1, -2; 1, 0]. - Paul Barry, Sep 05 2003
a(n) = 2^((n+2)/2)*cos(-n*acot(sqrt(7)/7)). - Paul Barry, Sep 06 2003
a(n) = (-1)^n*(2*A110512(n) - A001607(n)) = ((1 + i*sqrt(7))/2)^n + ((1 - i*sqrt(7))/2)^n. - Roman Witula, Aug 21 2012
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(7*k+1)/(x*(7*k+8) + 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
(a(A060728(n) - 2))^2 = (A107920(2*(A060728(n)) - 4))^2 = 2^(A060728(n)) - 7 = A227078(n), the Ramanujan-Nagell squares. - Raphie Frank, Dec 25 2013
a(n) = [x^n] ( (1 + x + sqrt(1 + 2*x - 7*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = (A107920(n+1) + 2*A107920(n+2) - A107920(n+3))/2. - Raphie Frank, Nov 28 2015
V_n(P,Q) = a(k*n) = ((a(k) + sqrt(-7))/2)^n + ((a(k) - sqrt(-7))/2)^n for k is in {1, 2, 3, 5, 13} = (A060728(n) - 2), P is in {1, -3, -5, 11, -181} = a(k), and Q is in {2, 4, 8, 32, 8192} = 2^k = (2*A076046(n) + 2) = (A227078(n) - 7)/4. P^2 - 4*Q = -7. - Raphie Frank, Dec 05 2015
From Peter Bala, Nov 16 2022: (Start)
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all positive integers n and k and all primes p.
A268924(n) == a(3^n) (mod 3^n). (End)