A110512
Expansion of (1 + x)/(1 + x + 2x^2).
Original entry on oeis.org
1, 0, -2, 2, 2, -6, 2, 10, -14, -6, 34, -22, -46, 90, 2, -182, 178, 186, -542, 170, 914, -1254, -574, 3082, -1934, -4230, 8098, 362, -16558, 15834, 17282, -48950, 14386, 83514, -112286, -54742, 279314, -169830, -388798, 728458
Offset: 0
- R. Witula, On some applications of formulas for unimodular complex numbers, Jacek Skalmierski's Press, Gliwice 2011 (in Polish).
-
CoefficientList[Series[(1 + x)/(1 + x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 29 2017 *)
LinearRecurrence[{-1,-2},{1,0},40] (* Harvey P. Dale, Dec 30 2024 *)
-
my(x='x+O('x^50)); Vec((1 + x)/(1 + x + 2*x^2)) \\ G. C. Greubel, Aug 29 2017
A105578
a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 1, a(2) = 0.
Original entry on oeis.org
1, 1, 0, -1, 0, 3, 4, -1, -8, -5, 12, 23, 0, -45, -44, 47, 136, 43, -228, -313, 144, 771, 484, -1057, -2024, 91, 4140, 3959, -4320, -12237, -3596, 20879, 28072, -13685, -69828, -42457, 97200, 182115, -12284, -376513, -351944, 401083, 1104972, 302807, -1907136, -2512749, 1301524, 6327023, 3723976
Offset: 0
-
-Join[{-1,-1,a=0,b=1},Table[c=1*b-2*a-1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *)
LinearRecurrence[{2,-3,2},{1,1,0},50] (* Harvey P. Dale, Mar 28 2019 *)
-
Vec(-(x^2-x+1)/((x-1)*(2*x^2-x+1)) + O(x^100)) \\ Colin Barker, Feb 08 2015
A105579
a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 3, a(2) = 4.
Original entry on oeis.org
1, 3, 4, 1, -4, -3, 8, 17, 4, -27, -32, 25, 92, 45, -136, -223, 52, 501, 400, -599, -1396, -195, 2600, 2993, -2204, -8187, -3776, 12601, 20156, -5043, -45352, -35263, 55444, 125973, 15088, -236855, -267028, 206685, 740744, 327377, -1154108, -1808859, 499360, 4117081, 3118364, -5115795, -11352520
Offset: 0
-
Table[(3 - ((1-I*Sqrt[7])^n + (1+I*Sqrt[7])^n)/2^n)/2 // Simplify, {n, 1, 50}] (* Jean-François Alcover, Jun 04 2017 *)
A105580
a(n+3) = a(n) - a(n+1) - a(n+2); a(0) = -5, a(1) = 6, a(2) = 0.
Original entry on oeis.org
-5, 6, 0, -11, 17, -6, -22, 45, -29, -38, 112, -103, -47, 262, -318, 9, 571, -898, 336, 1133, -2367, 1570, 1930, -5867, 5507, 2290, -13664, 16881, -927, -29618, 47426, -18735, -58309, 124470, -84896, -97883, 307249, -294262, -110870, 712381, -895773, 72522, 1535632, -2503927, 1040817, 2998742
Offset: 0
This sequence was generated using the same floretion which generated the sequences A105577, A105578, A105579, etc.. However, in this case a force transform was applied. [Specifically, (a(n)) may be seen as the result of a tesfor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.]
-
Transpose[NestList[Join[Rest[#],ListCorrelate[ {1,-1,-1}, #]]&,{-5,6,0},50]][[1]] (* Harvey P. Dale, Mar 14 2011 *)
CoefficientList[Series[(5-x-x^2)/(x^3-x^2-x-1),{x,0,50}],x] (* Harvey P. Dale, Mar 14 2011 *)
A206306
Riordan array (1, x/(1-3*x+2*x^2)).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 6, 1, 0, 15, 23, 9, 1, 0, 31, 72, 48, 12, 1, 0, 63, 201, 198, 82, 15, 1, 0, 127, 522, 699, 420, 125, 18, 1, 0, 255, 1291, 2223, 1795, 765, 177, 21, 1, 0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 6, 1;
0, 15, 23, 9, 1;
0, 31, 72, 48, 12, 1;
0, 63, 201, 198, 82, 15, 1;
0, 127, 522, 699, 420, 125, 18, 1;
0, 255, 1291, 2223, 1795, 765, 177, 21, 1;
0, 511, 3084, 6562, 6768, 3840, 1260, 238, 24, 1;
0, 1023, 7181, 18324, 23276, 16758, 7266, 1932, 308, 27, 1;
-
function T(n,k) // T = A206306
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return 0;
else return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k);
end if; return T;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 20 2022
-
# Uses function PMatrix from A357368.
PMatrix(10, n -> 2^n - 1); # Peter Luschny, Oct 09 2022
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==0, 0, 3*T[n- 1, k] +T[n-1, k-1] -2*T[n-2, k]]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 20 2022 *)
-
def T(n,k): # T = A206306
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==0): return 0
else: return 3*T(n-1, k) +T(n-1, k-1) -2*T(n-2, k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 20 2022
Showing 1-5 of 5 results.
Comments