A247560 a(n) = 3*a(n-1) - 4*a(n-2) with a(0) = a(1) = 1.
1, 1, -1, -7, -17, -23, -1, 89, 271, 457, 287, -967, -4049, -8279, -8641, 7193, 56143, 139657, 194399, 24569, -703889, -2209943, -3814273, -2603047, 7447951, 32756041, 68476319, 74404793, -50690897, -449691863, -1146312001, -1640168551, -335257649, 5554901257
Offset: 0
Examples
G.f. = 1 + x - x^2 - 7*x^3 - 17*x^4 - 23*x^5 - x^6 + 89*x^7 + 271*x^8 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2, pp. 251-267. See Theorem 2, p. 259.
- M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
- Index entries for linear recurrences with constant coefficients, signature (3,-4).
Programs
-
Haskell
a247560 n = a247560_list !! n a247560_list = 1 : 1 : zipWith (-) (map (* 3) $ tail a247560_list) (map (* 4) a247560_list) -- Reinhard Zumkeller, Sep 20 2014
-
Magma
I:=[1, 1]; [n le 2 select I[n] else 3*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 04 2018
-
Maple
A247560:=n->simplify((1/14*I)*sqrt(7)*((3/2+(1/2*I)*sqrt(7))^n-(3/2-(1/2*I)*sqrt(7))^n)+1/2*((3/2+(1/2*I)*sqrt(7))^n+(3/2-(1/2*I)*sqrt(7))^n)): seq(A247560(n), n=0..40); # Wesley Ivan Hurt, Oct 02 2014
-
Mathematica
a[ n_] := Re[ (1 - 1/Sqrt[-7]) (3 + Sqrt[-7])^n / 2^n]; LinearRecurrence[{3,-4},{1,1},40] (* Harvey P. Dale, Jun 13 2017 *)
-
PARI
{a(n) = real( (1 + quadgen(-7))^n )};
-
Sage
[((1-1/sqrt(-7))*(3+sqrt(-7))^n/2^n).real() for n in range(34)] # Peter Luschny, Oct 02 2014 (after Somos)
Comments