cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A088137 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The Lucas U(P=2, Q=3) sequence. - R. J. Mathar, Oct 24 2012
Hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 2 - 3/(2 - 3/(2 - 3/(2 - ... - 3/2))) with n 3's. - Greg Dresden, Oct 06 2019
With different signs, 0, 1, -2, 1, 4, -11, 10, 13, -56, 73, 22, -263, 460, ... also the Lucas U(-2,3) sequence. - R. J. Mathar, Jan 08 2013
From Peter Bala, Apr 01 2018: (Start)
The companion Lucas sequence V(n,2,3) is A087455.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = a(n)/A087455(n). Cf. A025172 and A127357. (End)

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
  • Maple
    A[0]:= 0: A[1]:= 1:
    for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:
    seq(A[n],n=0..100); # Robert Israel, Aug 05 2014
  • Mathematica
    LinearRecurrence[{2,-3},{0,1},40] (* Harvey P. Dale, Nov 03 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,3) for n in range(0, 38)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 3^(n/2)*sin(n*atan(sqrt(2)))/sqrt(2).
|3*A087455(n) - A087455(n+1)| = 2*a(n+1) or 3*A087455(n) + A087455(n+1) = 2*a(n+1). - Creighton Dement, Aug 02 2004
G.f.: x/(1 - 2*x + 3*x^2).
E.g.f.: exp(x)*sin(sqrt(2)*x)/sqrt(2).
a(n) = 2*a(n-1) - 3*a(n-2) for n > 1, a(0)=0, a(1)=1.
a(n) = ((1 + i*sqrt(2))^n - (1 - i*sqrt(2))^n)/(2*i*sqrt(2)), where i=sqrt(-1).
a(n) = Im((1 + i*sqrt(2))^n/sqrt(2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)(-2)^k.
3^(n+1) = 9*(A087455(n))^2 + 2*(A087455(n+1))^2 - 2*(a(n+2))^2; 3^n = a(n+1)^2 + 3*a(n)^2 - 2*a(n+1)*a(n) for n > 0 - Creighton Dement, Jan 20 2005
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 3*x)/( x*(4*k+4 - 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n+1) = Sum_{k=0..n} A123562(n,k). - Philippe Deléham, Nov 23 2013
a(n) = n*hypergeom([(1-n)/2,(2-n)/2],[3/2],-2). - Gerry Martens, Sep 03 2023

A088138 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 0, -8, -16, 0, 64, 128, 0, -512, -1024, 0, 4096, 8192, 0, -32768, -65536, 0, 262144, 524288, 0, -2097152, -4194304, 0, 16777216, 33554432, 0, -134217728, -268435456, 0, 1073741824, 2147483648, 0, -8589934592, -17179869184, 0, 68719476736, 137438953472
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The sequence 0,1,-2,0,8,-16,... has g.f. x/(1+2*x-4*x^2), a(n) = 2^n*sin(2n*Pi/3)/sqrt(3) and is the inverse binomial transform of sin(sqrt(3)*x)/sqrt(3): 0,1,-3,0,9,...
a(n+1) is the Hankel transform of A100192. - Paul Barry, Jan 11 2007
a(n+1) is the trinomial transform of A010892: a(n+1) = Sum_{k=0..2n} trinomial(n,k)*A010892(k+1) where trinomial(n, k) = trinomial coefficients (A027907). - Paul Barry, Sep 10 2007
a(n+1) is the Hankel transform of A100067. - Paul Barry, Jun 16 2009
From Paul Curtz, Oct 04 2009: (Start)
1) a(n) = A131577(n)*A128834(n).
2) Binomial transform of 0,1,0,-3,0,9,0,-27, see A000244.
3) Sequence is identical to every 2n-th difference divided by (-3)^n.
4) a(3n) + a(3n+1) + a(3n+2) = (-1)^n*3*A001018(n) for n >= 1.
5) For missing terms in a(n) see A013731 = 4*A001018. (End)
The coefficient of i of Q^n, where Q is the quaternion 1+i+j+k. Due to symmetry, also the coefficients of j and of k. - Stanislav Sykora, Jun 11 2012 [The coefficients of 1 are in A138230. - Wolfdieter Lang, Jan 28 2016]
With different signs, 0, 1, -2, 0, 8, -16, 0, 64, -128, 0, 512, -1024, ... is the Lucas U(-2,4) sequence. - R. J. Mathar, Jan 08 2013

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..40] do a[n]:=2*a[n-1]-4*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2018
    
  • Maple
    M:= <<1+I,1+I>|>:
    T:= <<-I/2,0>|<0,I/2>>:
    seq(LinearAlgebra:-Trace(T.M^n),n=0..100); # Robert Israel, Jan 28 2016
  • Mathematica
    Join[{a=0,b=1},Table[c=2*b-4*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    LinearRecurrence[{2, -4}, {0, 1}, 40] (* Vincenzo Librandi, Jan 29 2016 *)
    Table[2^(n-2)*((-1)^Quotient[n-1,3]+(-1)^Quotient[n,3]), {n,0,40}] (*Federico Provvedi,Apr 24 2022*)
  • PARI
    /* lists powers of any quaternion */
    QuaternionToN(a,b,c,d,nmax) = {local (C);C = matrix(nmax+1,4);C[1,1]=1;for(n=2,nmax+1,C[n,1]=a*C[n-1,1]-b*C[n-1,2]-c*C[n-1,3]-d*C[n-1,4];C[n,2]=b*C[n-1,1]+a*C[n-1,2]+d*C[n-1,3]-c*C[n-1,4];C[n,3]=c*C[n-1,1]-d*C[n-1,2]+a*C[n-1,3]+b*C[n-1,4];C[n,4]=d*C[n-1,1]+c*C[n-1,2]-b*C[n-1,3]+a*C[n-1,4];);return (C);} /* Stanislav Sykora, Jun 11 2012 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-2*x+4*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • PARI
    a(n) = 2^(n-1)*polchebyshev(n-1, 2, 1/2); \\ Michel Marcus, May 02 2022
    
  • Sage
    [lucas_number1(n,2,4) for n in range(0, 39)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: x/(1-2*x+4*x^2).
E.g.f.: exp(x)*sin(sqrt(3)*x)/sqrt(3).
a(n) = 2*a(n-1) - 4*a(n-2), a(0)=0, a(1)=1.
a(n) = ((1+i*sqrt(3))^n - (1-i*sqrt(3))^n)/(2*i*sqrt(3)).
a(n) = Im( (1+i*sqrt(3))^n/sqrt(3) ).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k+1)*(-3)^k.
From Paul Curtz, Oct 04 2009: (Start)
a(n) = a(n-1) + a(n-2) + 2*a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4). (End)
E.g.f.: exp(x)*sin(sqrt(3)*x)/sqrt(3) = G(0)*x^2 where G(k)= 1 + (3*k+2)/(2*x - 32*x^5/(16*x^4 - 3*(k+1)*(3*k+2)*(3*k+4)*(3*k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2012
G.f.: x/(1-2*x+4*x^2) = 2*x^2*G(0) where G(k)= 1 + 1/(2*x - 32*x^5/(16*x^4 - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 27 2012
a(n) = -2^(n-1)*Product_{k=1..n}(1 + 2*cos(k*Pi/n)) for n >= 1. - Peter Luschny, Nov 28 2019
a(n) = 2^(n-1) * U(n-1, 1/2), where U(n, x) is the Chebyshev polynomial of the second kind. - Federico Provvedi, Apr 24 2022

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A045873 a(n) = A006496(n)/2.

Original entry on oeis.org

0, 1, 2, -1, -12, -19, 22, 139, 168, -359, -1558, -1321, 5148, 16901, 8062, -68381, -177072, -12239, 860882, 1782959, -738492, -10391779, -17091098, 17776699, 121008888, 153134281, -298775878, -1363223161, -1232566932
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A006495. - Paul Barry, Mar 16 2006
This is the Lucas U(P=2,Q=5) sequence. - R. J. Mathar, Oct 24 2012
With different signs, 0, 1, -2, -1, 12, -19, -22, 139, -168, -359, 1558, ... we obtain the Lucas U(-2,5) sequence. - R. J. Mathar, Jan 08 2013

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=2*a[n-1]-5*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) - 5*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
    
  • Maple
    seq(coeff(series(x/(1-2*x+5*x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    LinearRecurrence[{2,-5}, {0,1}, 40] (* G. C. Greubel, Jan 11 2024 *)
  • PARI
    concat(0,Vec(1/(1-2*x+5*x^2)+O(x^99))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • Sage
    [lucas_number1(n,2,5) for n in range(0, 29)] # Zerinvary Lajos, Apr 23 2009
    
  • SageMath
    A045873=BinaryRecurrenceSequence(2,-5,0,1)
    [A045873(n) for n in range(41)] # G. C. Greubel, Jan 11 2024

Formula

a(n)^2 = A094423(n).
From Paul Barry, Sep 20 2003: (Start)
O.g.f.: x/(1 - 2*x + 5*x^2).
E.g.f.: exp(x)*sin(2*x)/2.
a(n) = 2*a(n-1) - 5*a(n-2), a(0)=0, a(1)=1.
a(n) = ((1 + 2*i)^n - (1 - 2*i)^n)/(4*i), where i=sqrt(-1).
a(n) = Im{(1 + 2*i)^n/2}.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k+1)*(-4)^k. (End)
a(n+1) = Sum_{k=0..n} binomial(k,n-k)*2^k*(-5/2)^(n-k). - Paul Barry, Mar 16 2006
G.f.: 1/(4*x - 1/G(0)) where G(k) = 1 - (k+1)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 5*x)/( x*(4*k+4 - 5*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = 5^((n-1)/2)*ChebyshevU(n-1, 1/sqrt(5)). - G. C. Greubel, Jan 11 2024

Extensions

More terms from Paul Barry, Sep 20 2003

A138229 Expansion of (1-x)/(1-2x+6x^2).

Original entry on oeis.org

1, 1, -4, -14, -4, 76, 176, -104, -1264, -1904, 3776, 18976, 15296, -83264, -258304, -17024, 1515776, 3133696, -2827264, -24456704, -31949824, 82840576, 357380096, 217716736, -1708847104, -4723994624, 805093376
Offset: 0

Views

Author

Paul Barry, Mar 06 2008

Keywords

Comments

Binomial transform of [1, 0, -5, 0, 25, 0, -125, 0, 625, 0, ...]=: powers of -5 with interpolated zeros. - Philippe Deléham, Dec 02 2008

Crossrefs

Cf. A088139.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+6x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {2,-6},{1,1},30] (* Harvey P. Dale, Feb 29 2012 *)
    TrigExpand@Table[6^(n/2) Cos[n ArcTan[Sqrt[5]]], {n, 0, 20}] (* or *)
    Table[Sum[(-5)^k Binomial[n, 2 k], {k, 0, n/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 20 2016 *)
  • Sage
    [lucas_number2(n,2,6)/2 for n in range(0,28)] # Zerinvary Lajos, Jul 08 2008

Formula

From Philippe Deléham, Nov 14 2008: (Start)
a(n) = 2*a(n-1) - 6*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A098158(n,k)*(-5)^(n-k). (End)
a(n) = Sum_{k=0..n} A124182(n,k)*(-6)^(n-k). - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k+1)/(x*(5*k+6) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = real part of the quaternion (1 + i + 2*j)^n. - Peter Bala, Mar 29 2015

A172250 Triangle, read by rows, given by [0,1,-1,0,0,0,0,0,0,0,...] DELTA [1,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 0, 2, -1, 0, 0, 1, 1, -1, 0, 0, 0, 3, -2, 0, 0, 0, 0, 1, 3, -4, 1, 0, 0, 0, 0, 4, -2, -2, 1, 0, 0, 0, 0, 1, 6, -9, 3, 0, 0, 0, 0, 0, 0, 5, 0, -9, 6, -1, 0, 0, 0, 0, 0, 1, 10, -15, 3, 3, -1, 0, 0, 0, 0, 0, 0, 6, 5, -24, 18, -4, 0, 0, 0, 0, 0, 0, 0, 1, 15, -20, -6, 18, -8, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2010

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1,  0;
  0,  0,  2, -1;
  0,  0,  1,  1, -1;
  0,  0,  0,  3, -2,  0;
  0,  0,  0,  1,  3, -4,  1;
  0,  0,  0,  0,  4, -2, -2,  1; ...
		

Crossrefs

Cf. A101950.

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(n,k) = 0 if k > n or if k < 0.
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A088139(n+1), A001607(n+1), A000007(n), A000012(n), A099087(n), A190960(n+1) for x = -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Feb 15 2012
G.f.: 1/(1-y*x+y*(y-1)*x^2). - Philippe Deléham, Feb 15 2012
Showing 1-7 of 7 results.