cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A072547 Main diagonal of the array in which first column and row are filled alternatively with 1's or 0's and then T(i,j) = T(i-1,j) + T(i,j-1).

Original entry on oeis.org

1, 0, 2, 6, 22, 80, 296, 1106, 4166, 15792, 60172, 230252, 884236, 3406104, 13154948, 50922986, 197519942, 767502944, 2987013068, 11641557716, 45429853652, 177490745984, 694175171648, 2717578296116, 10648297329692, 41757352712480
Offset: 1

Views

Author

Benoit Cloitre, Aug 05 2002

Keywords

Comments

A Catalan transform of A078008 under the mapping g(x)->g(xc(x)). - Paul Barry, Nov 13 2004
Number of positive terms in expansion of (x_1 + x_2 + ... + x_{n-1} - x_n)^n. - Sergio Falcon, Feb 08 2007
Hankel transform is A088138(n+1). - Paul Barry, Feb 17 2009
Without the beginning "1", we obtain the first diagonal over the principal diagonal of the array notified by B. Cloitre in A026641 and used by R. Choulet in A172025, and from A172061 to A172066. - Richard Choulet, Jan 25 2010
Also central terms of triangles A108561 and A112465. - Reinhard Zumkeller, Jan 03 2014
With offset 0 and for p prime, the p-th term is divisible by p. - F. Chapoton, Dec 03 2021

Examples

			The array begins:
  1 0 1 0 1..
  0 0 1 1 2..
  1 1 2 3 5..
  0 1 3 6 11..
so sequence begins : 1, 0, 2, 6, ...
		

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Haskell
    a072547 n = a108561 (2 * (n - 1)) (n - 1)
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( x*(1 + Sqrt(1-4*x))/(Sqrt(1-4*x)*(3-Sqrt(1-4*x))) )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    taylor( (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^(-1),z=0,42); for n from -1 to 40 do a(n):=sum('(-1)^(p)*binomial(2n-p+1,1+n-p)',p=0..n+1): od:seq(a(n),n=-1..40):od; # Richard Choulet, Jan 25 2010
  • Mathematica
    CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x]) /(2*x))^(-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
    a[n_] := Binomial[2 n - 2, n] Hypergeometric2F1[1, 2 - n, n + 1, 1/2] / 2 + (-2)^(1 - n); Table[a[n], {n, 1, 26}] (* Peter Luschny, Dec 03 2021 *)
  • PARI
    a(n) = (-1)^n*sum(k=0, n, binomial(-n, k));
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
    
  • Sage
    a=(x*(1+sqrt(1-4*x))/(sqrt(1-4*x)*(3-sqrt(1-4*x)))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 17 2019

Formula

If offset is 0, a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+k-1, k). - Vladeta Jovovic, Feb 18 2003
G.f.: x*(1-x*C)/(1-2*x*C)/(1+x*C), where C = (1-sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers (A000108). - Vladeta Jovovic, Feb 18 2003
a(n) = Sum_{j=0..floor((n-1)/2)} binomial(2*n-2*j-4, n-3). - Emeric Deutsch, Jan 28 2004
a(n) = A108561(2*(n-1),n-1). - Reinhard Zumkeller, Jun 10 2005
a(n) = (-1)^n*Sum_{k=0..n} binomial(-n,k) (offset 0). - Paul Barry, Feb 17 2009
Other form of the G.f: f(z) = (2/(3*sqrt(1-4*z) -1 +4*z))*((1 -sqrt(1-4*z))/(2*z))^(-1). - Richard Choulet, Jan 25 2010
D-finite with recurrence 2*(-n+1)*a(n) + (9*n-17)*a(n-1) + (-3*n+19)*a(n-2) + 2*(-2*n+7)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
From Peter Bala, Oct 01 2015: (Start)
a(n) = [x^n] ((1 - x)^2/(1 - 2*x))^n.
Exp( Sum_{n >= 1} a(n+1)*x^n/n ) = 1 + x^2 + 2*x^3 + 6*x^4 + 18*x^5 + ... is the o.g.f for A000957. (End)
a(n) = binomial(2*n-2, n)*hypergeom([1, 2-n], [n+1], 1/2) / 2 + (-2)^(1-n). - Peter Luschny, Dec 03 2021
a(n) = 2 * A014301(n-1) for n>=3. - Alois P. Heinz, Dec 27 2023

Extensions

Corrected and extended by Vladeta Jovovic, Feb 17 2003

A088137 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The Lucas U(P=2, Q=3) sequence. - R. J. Mathar, Oct 24 2012
Hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 2 - 3/(2 - 3/(2 - 3/(2 - ... - 3/2))) with n 3's. - Greg Dresden, Oct 06 2019
With different signs, 0, 1, -2, 1, 4, -11, 10, 13, -56, 73, 22, -263, 460, ... also the Lucas U(-2,3) sequence. - R. J. Mathar, Jan 08 2013
From Peter Bala, Apr 01 2018: (Start)
The companion Lucas sequence V(n,2,3) is A087455.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = a(n)/A087455(n). Cf. A025172 and A127357. (End)

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
  • Maple
    A[0]:= 0: A[1]:= 1:
    for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:
    seq(A[n],n=0..100); # Robert Israel, Aug 05 2014
  • Mathematica
    LinearRecurrence[{2,-3},{0,1},40] (* Harvey P. Dale, Nov 03 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,3) for n in range(0, 38)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 3^(n/2)*sin(n*atan(sqrt(2)))/sqrt(2).
|3*A087455(n) - A087455(n+1)| = 2*a(n+1) or 3*A087455(n) + A087455(n+1) = 2*a(n+1). - Creighton Dement, Aug 02 2004
G.f.: x/(1 - 2*x + 3*x^2).
E.g.f.: exp(x)*sin(sqrt(2)*x)/sqrt(2).
a(n) = 2*a(n-1) - 3*a(n-2) for n > 1, a(0)=0, a(1)=1.
a(n) = ((1 + i*sqrt(2))^n - (1 - i*sqrt(2))^n)/(2*i*sqrt(2)), where i=sqrt(-1).
a(n) = Im((1 + i*sqrt(2))^n/sqrt(2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)(-2)^k.
3^(n+1) = 9*(A087455(n))^2 + 2*(A087455(n+1))^2 - 2*(a(n+2))^2; 3^n = a(n+1)^2 + 3*a(n)^2 - 2*a(n+1)*a(n) for n > 0 - Creighton Dement, Jan 20 2005
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 3*x)/( x*(4*k+4 - 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n+1) = Sum_{k=0..n} A123562(n,k). - Philippe Deléham, Nov 23 2013
a(n) = n*hypergeom([(1-n)/2,(2-n)/2],[3/2],-2). - Gerry Martens, Sep 03 2023

A087455 Expansion of (1 - x)/(1 - 2*x + 3*x^2) in powers of x.

Original entry on oeis.org

1, 1, -1, -5, -7, 1, 23, 43, 17, -95, -241, -197, 329, 1249, 1511, -725, -5983, -9791, -1633, 26107, 57113, 35905, -99529, -306773, -314959, 290401, 1525679, 2180155, -216727, -6973919, -13297657, -5673557, 28545857, 74112385, 62587199, -97162757, -382087111, -472685951
Offset: 0

Views

Author

Simone Severini, Oct 23 2003

Keywords

Comments

Type 2 generalized Gaussian Fibonacci integers.
Binomial transform of A077966. - Philippe Deléham, Dec 02 2008
The real component of Q^n, where Q is the quaternion 1 + 0*i + 1*j + 1*k. - Stanislav Sykora, Jun 11 2012
If entries are multiplied by 2*(-1)^n, which gives 2, -2, -2, 10, -14, -2, 46, -86, 34, 190, -482, 394, ..., we obtain the Lucas V(-2,3) sequence. - R. J. Mathar, Jan 08 2013
The real component of (1 + sqrt(-2))^n. - Giovanni Resta, Apr 01 2014
It is an open question whether or not this sequence satisfies Benford's law [Berger-Hill, 2017; Arno Berger, email, Jan 06 2017]. - N. J. A. Sloane, Feb 08 2017
Given an alternated cubic honeycomb with a planar dissection along a plane from edge to opposite edge of the containing cube. The sequence (1 + sqrt(-2))^n contains a real component representing distance along the edge of the tetrahedron/octahedron and an imaginary component representing the orthogonal distance along the sqrt(2) axis in a tetrahedron/octahedron, this generates a unique cevian (line from the apical vertex to a vertex on the triangular tiling composing the opposite face) in this plane with length (sqrt(3))^n. - Jason Pruski, Sep 04 2017, Jan 08 2018
From Peter Bala, Apr 01 2018: (Start)
This sequence is the Lucas sequence V(n,2,3). The companion Lucas sequence U(n,2,3) is A088137.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = A088137(n)/a(n). Cf. A025172 and A127357. (End)

Examples

			G.f. = 1 + x - x^2 - 5*x^3 - 7*x^4 + x^5 + 23*x6 + 43*x^7 + 17*x^8 - 95*x^9 + ...
		

References

  • Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
  • S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else 2*Self(n-1) -3*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 03 2024
    
  • Maple
    Digits:=100; a:=n->round(abs(evalf((3^(n/2))*cos(n*arctan(sqrt(2))))));
    # alternative:
    a:= gfun:-rectoproc({a(n) = 2*a(n-1) - 3*a(n-2),a(0)=1,a(1)=1},a(n),remember):
    map(a, [$0..100]); # Robert Israel, Jun 23 2015
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+3*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Apr 01 2014 *)
    a[ n_] := ChebyshevT[ n, 1/Sqrt[3]] Sqrt[3]^n // Simplify; (* Michael Somos, May 15 2015 *)
    LinearRecurrence[{2,-3},{1,1},50] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    {a(n) = real( (1 + quadgen(-8))^n )}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    {a(n) = real( subst( poltchebi(n), 'x, quadgen(12) / 3) * quadgen(12)^n)}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    a(n)=simplify(polchebyshev(n,,quadgen(12)/3)*quadgen(12)^n) \\ Charles R Greathouse IV, Jun 26 2013
    
  • SageMath
    [sqrt(3)^n*chebyshev_T(n, 1/sqrt(3)) for n in range(41)] # G. C. Greubel, Jan 03 2024

Formula

a(n) = (3^(n/2))*cos(n*arctan(sqrt(2))). - Paul Barry, Oct 23 2003
From Paul Barry, Sep 03 2004: (Start)
a(n) = 2*a(n-1) - 3*a(n-2).
a(n) = (-1)^n*Sum_{m=0..n} binomial(n, m)*Sum_{k=0..n} binomial(m, 2k)2^(m-k).
Binomial transform of 1/(1 + 2*x^2), or (1, 0, -2, 0, 4, 0, -8, 0, 16, ...). (End)
a(n+1) = a(n+2) - 2*A088137(n+1), a(n+1) = A088137(n+2) - A088137(n+1). - Creighton Dement, Oct 28 2004
a(n) = upper left and lower right terms of [1,-2, 1,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-2)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-3)^(n-k). - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = a(-n) * 3^n for all n in Z. - Michael Somos, Aug 25 2014
E.g.f.: (1/2)*(exp((1 - i*sqrt(2))*x) + exp((1 + i*sqrt(2))*x)), where i is the imaginary unit. - Stefano Spezia, Jul 17 2019

Extensions

The explicit formula was given by Paul Barry.
Corrected and extended by N. J. A. Sloane, Aug 01 2004
More terms from Creighton Dement, Jul 31 2004

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A138230 Expansion of (1-x)/(1 - 2*x + 4*x^2).

Original entry on oeis.org

1, 1, -2, -8, -8, 16, 64, 64, -128, -512, -512, 1024, 4096, 4096, -8192, -32768, -32768, 65536, 262144, 262144, -524288, -2097152, -2097152, 4194304, 16777216, 16777216, -33554432, -134217728, -134217728, 268435456, 1073741824, 1073741824, -2147483648, -8589934592
Offset: 0

Views

Author

Paul Barry, Mar 06 2008

Keywords

Comments

In general, the expansion of (1-x)/(1 - 2*x + (m+1)*x^2) has general term given by a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*(-m)^k = ((1+sqrt(-m))^n + (1-sqrt(-m))^n)/2.
Binomial transform of [1, 0, -3, 0, 9, 0, -27, 0, 81, 0, ...] = powers of -3 with interpolated zeros. - Philippe Deléham, Dec 02 2008

Crossrefs

Programs

  • Magma
    [2^n*Evaluate(ChebyshevFirst(n), 1/2): n in [0..30]]; // G. C. Greubel, Feb 11 2023
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,-4},{1,1},30] (* Harvey P. Dale, Nov 11 2014 *)
  • SageMath
    [2^n*chebyshev_T(n,1/2) for n in range(31)] # G. C. Greubel, Feb 11 2023

Formula

From Philippe Deléham, Nov 14 2008: (Start)
a(n) = 2*a(n-1) - 4*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A098158(n,k)*(-3)^(n-k). (End)
a(n) = Sum_{k=0..n} A124182(n,k)*(-4)^(n-k). - Philippe Deléham, Nov 15 2008
a(n) = 2^n*cos(Pi*n/3). - Richard Choulet, Nov 19 2008
a(n) = -8*a(n-3). - Paul Curtz, Apr 22 2011
From Sergei N. Gladkovskii, Jul 27 2012: (Start)
G.f.: G(0) where G(k) = 1 + x/(1 + 2*x/(1 - 2*x - 4*x/(4*x + 1/G(k+1)))); (continued fraction).
E.g.f.: exp(x)*cos(sqrt(3)*x) = G(0) where G(k) = 1 + x/(3*k+1 + 2*x*(3*k+1)/(3*k+2 - 2*x - 4*x*(3*k+2)/(4*x + 3*(k+1)/G(k+1)))); (continued fraction). (End)
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = A088138(n+1) - A088138(n). - R. J. Mathar, Mar 04 2018
a(n) = (-1)^n*A104537(n). - R. J. Mathar, May 21 2019
a(n) = 2^(n-1)*A087204(n). - G. C. Greubel, Feb 11 2023
Sum_{n>=0} 1/a(n) = 4/3. - Amiram Eldar, Feb 14 2023

A100192 a(n) = Sum_{k=0..n} binomial(2*n,n+k)*2^k.

Original entry on oeis.org

1, 4, 18, 82, 374, 1704, 7752, 35214, 159750, 723880, 3276908, 14821668, 66991436, 302605528, 1366182276, 6165204102, 27811282374, 125415953208, 565408947756, 2548400193852, 11483706241044, 51739037228688, 233070330199296, 1049777052815052, 4727770393417884
Offset: 0

Views

Author

Paul Barry, Nov 08 2004

Keywords

Comments

A transform of 2^n under the mapping g(x)->(1/sqrt(1-4*x))*g(x*c(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. A transform of 3^n under the mapping g(x)->(1/(c(x)*sqrt(1-4*x)))*g(x*c(x)).
Hankel transform is A088138(n+1). - Paul Barry, Jan 11 2007

Crossrefs

Cf. A032443.

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x]*(Sqrt[1-4*x]-3*x+1)/((1-4*x)*(2-9*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

Formula

G.f.: (sqrt(1-4*x)+1)/(sqrt(1-4*x)*(3*sqrt(1-4*x)-1)).
G.f.: sqrt(1-4*x)*(sqrt(1-4*x)-3*x+1)/((1-4*x)*(2-9*x)).
a(n) = Sum_{k=0..n} binomial(2*n, n-k)*2^k.
a(n) = Sum_{k=0..n} C(2*n,k)*2^(n-k). - Paul Barry, Jan 11 2007
a(n) = Sum_{k=0..n} C(n+k-1,k)*3^(n-k). - Paul Barry, Sep 28 2007
D-finite with recurrence 2*n*a(n) +(-23*n+16)*a(n-1) +3*(29*n-44)*a(n-2) +54*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ (9/2)^n. - Vaclav Kotesovec, Feb 12 2014
a(n) = [x^n] 1/((1 - x)^n*(1 - 3*x)). - Ilya Gutkovskiy, Oct 12 2017

A168175 Expansion of 1/(1 - 4*x + 7*x^2).

Original entry on oeis.org

1, 4, 9, 8, -31, -180, -503, -752, 513, 7316, 25673, 51480, 26209, -255524, -1205559, -3033568, -3695359, 6453540, 51681673, 161551912, 284435937, 6880364, -1963530103, -7902282960, -17864421119, -16141703756, 60484132809
Offset: 0

Views

Author

Roger L. Bagula, Nov 19 2009

Keywords

Comments

Also the coefficient of i of Q^(n+1), Q being the quaternion 2+i+j+k. The real part of the quaternion power is A213421, see also A087455, A088138, A128018. - Stanislav Sykora, Jun 11 2012
a(n)*(-1)^n gives the coefficient c(7^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (but not for primes 2 and 3) with alpha(x) = x (weight 2) and input c(7) = -4. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727(n) = b(n) where c(7^n) = b((7^n-1)/6) = b(A023000(n)), n >= 0. Proof: The alpha-multiplicity with alpha(1) = 1 and c(1) = 1 leads from p^n = p^(n-1)*p to the recurrence c_n = c*c_(n-1) - a*c(n-2), with c_n = c(p^n), c = c(p) and a = alpha(p). Inputs are c_{-1} = 0 and c_0 = c(1) = 1. This gives the polynomial c_n = sqrt(a)^n * S(n,c/sqrt(a)), with Chebyshev's S-polynomials (A049310). See the Apostol reference, Exercise 6., p. 139. Here p = 7, c = -4. - Wolfdieter Lang, Apr 27 2016

Examples

			G.f. = 1 + 4*x + 9*x^2 + 8*x^3 - 31*x^4 - 180*x^5 - 503*x^6 - 752*x^7 + ... - _Michael Somos_, Feb 23 2020
		

References

  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.

Crossrefs

Programs

  • Magma
    I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
    
  • Mathematica
    CoefficientList[Series[1/(1-4x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {4,-7},{1,4},30] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    {a(n) = my(s=1, t=1); if( n<0, n=-2-n; s=-1; t=1/7); s * t^(n+1) * polcoeff(1 / (1 - 4*x + 7*x^2) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2020 */

Formula

a(n) = (1/2 - i/sqrt(3))*(2 + i*sqrt(3))^n + (1/2 + i/sqrt(3))*(2 - i*sqrt(3))^n (Binet formula), where i is the imaginary unit.
a(n) = 4*a(n-1) - 7*a(n-2).
a(n) = sqrt(7)^n * S(n, 4/sqrt(7)), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Apr 27 2016
E.g.f.: (2*sqrt(3)*sin(sqrt(3)*x) + 3*cos(sqrt(3)*x))*exp(2*x)/3. - Ilya Gutkovskiy, Apr 27 2016
a(n) = (-1) * 7^(n+1) * a(-2-n) for all n in Z. - Michael Somos, Feb 23 2020

A213421 Real part of Q^n, Q being the quaternion 2+i+j+k.

Original entry on oeis.org

1, 2, 1, -10, -47, -118, -143, 254, 2017, 6290, 11041, 134, -76751, -307942, -694511, -622450, 2371777, 13844258, 38774593, 58188566, -38667887, -561991510, -1977290831, -3975222754, -2059855199, 19587138482
Offset: 0

Views

Author

Stanislav Sykora, Jun 11 2012

Keywords

Crossrefs

Programs

  • Maple
    #A213421
    seq(simplify(1/2*((2+I*sqrt(3))^n+(2-I*sqrt(3))^n)), n = 0 .. 25); # Peter Bala, Mar 29 2015
  • PARI
    QuaternionToN(a,b,c,d,nmax) = {local (C);C = matrix(nmax+1,4);C[1,1]=1;for(n=2,nmax+1,C[n,1]=a*C[n-1,1]-b*C[n-1,2]-c*C[n-1,3]-d*C[n-1,4];C[n,2]=b*C[n-1,1]+a*C[n-1,2]+d*C[n-1,3]-c*C[n-1,4];C[n,3]=c*C[n-1,1]-d*C[n-1,2]+a*C[n-1,3]+b*C[n-1,4];C[n,4]=d*C[n-1,1]+c*C[n-1,2]-b*C[n-1,3]+a*C[n-1,4];);return (C);}
    Q=QuaternionToN(2,1,1,1,1000);
    for(n=1,#Q[,1],write("A213421.txt",n-1," ",Q[n,1]));

Formula

Conjecture: G.f. (1-2x)/(1-4x+7x^2). a(n) = A168175(n)-2*A168175(n-1). - R. J. Mathar, Jun 25 2012
From Peter Bala, Mar 29 2015: (Start)
The above o.g.f. is correct; this is the Lucas sequence V_n(4,7).
a(n) = Re( (2 + sqrt(3)*i)^n )= 1/2*( (2 + sqrt(3)*i)^n + (2 - sqrt(3)*i)^n ).
a(n) = 1/2 * trace( [ 2 + i, 1 + i; -1 + i, 2 - i ]^n ) = 1/2 * trace( [ 2 , sqrt(3)*i ; sqrt(3)*i, 2 ]^n ).
a(n) = 4*a(n-1) - 7*a(n-2) with a(0) = 1, a(1) = 2. (End)

A100067 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*2^(n-2*k).

Original entry on oeis.org

1, 2, 6, 14, 38, 92, 240, 590, 1510, 3740, 9476, 23564, 59372, 147968, 371636, 927374, 2324870, 5805740, 14538660, 36322340, 90898228, 227153192, 568235696, 1420236524, 3551943388, 8878506392, 22201466280, 55498465400, 138766221800, 346895496200, 867316299260, 2168213189390
Offset: 0

Views

Author

Paul Barry, Nov 02 2004

Keywords

Comments

An inverse Chebyshev transform of x/(1-2*x), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))*g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4*x^2))*A(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108. In general, Sum_{k=0..floor(n/2)} binomial(n,k) * r^(n-2*k) has g.f. 2*x/(sqrt(1-4*x^2)*(r*sqrt(1-4*x^2) + 2*x - r)). - corrected by Vaclav Kotesovec, Dec 06 2012
Generally (for r>1), a(n) ~ (r + 1/r)^n. - Vaclav Kotesovec, Dec 06 2012
Hankel transform is A088138(n+1). - Paul Barry, Jun 16 2009

Crossrefs

Programs

  • Magma
    m:=2; [(&+[Binomial(n,k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jun 08 2022
    
  • Mathematica
    CoefficientList[Series[x/(Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 06 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)*(sqrt(1-4*x^2)+x-1))) \\ Joerg Arndt, May 12 2013
    
  • SageMath
    m=2; [sum(binomial(n,k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # G. C. Greubel, Jun 08 2022

Formula

G.f.: x/(sqrt(1-4*x^2)*(sqrt(1-4*x^2)+x-1)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*2^(n-2*k).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1 + (-1)^(n-k))*2^k/2.
Recurrence: 2*n*(3*n-7)*a(n) = (15*n^2 - 35*n + 8)*a(n-1) + 4*(6*n^2 - 20*n + 11)*a(n-2) - 20*(n-2)*(3*n-4)*a(n-3). - Vaclav Kotesovec, Dec 06 2012
a(n) ~ 5^n/2^n. - Vaclav Kotesovec, Dec 06 2012
Showing 1-10 of 15 results. Next