cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A098158 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 2*k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 6, 1, 0, 0, 0, 5, 10, 1, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0, 0, 1, 66, 495, 924
Offset: 0

Views

Author

Paul Barry, Aug 29 2004

Keywords

Comments

Row sums are A011782. Inverse is A065547.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jul 29 2006
Sum of entries in column k is A001519(k+1) (the odd-indexed Fibonacci numbers). - Philippe Deléham, Dec 02 2008
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k left-to-right minima. A left-to-right minimum in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j < i. - Tian Han, Nov 16 2023

Examples

			Rows begin
  1;
  0, 1;
  0, 1, 1;
  0, 0, 3, 1;
  0, 0, 1, 6, 1;
		

Crossrefs

Cf. A119900. - Philippe Deléham, Dec 02 2008

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 2*(n-k)) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(n, 2*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Table[Binomial[n, 2*(n-k)], {n,0,12}, {k,0,n}]//Flatten (* Michael De Vlieger, Oct 12 2016 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/((1-x*y)^2-x^2*y)+x*O(x^n), n, x) + y*O(y^k),k,y)} (Hanna)
    
  • PARI
    T(n,k) = binomial(n, 2*(n-k));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(n, 2*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n,k) = binomial(n,2*(n-k)).
From Tom Copeland, Oct 10 2016: (Start)
E.g.f.: exp(t*x) * cosh(t*sqrt(x)).
O.g.f.: (1/2) * ( 1 / (1 - (1 + sqrt(1/x))*x*t) + 1 / (1 - (1 - sqrt(1/x))*x*t) ).
Row polynomial: x^n * ((1 + sqrt(1/x))^n + (1 - sqrt(1/x))^n) / 2. (End)
Column k is generated by the polynomial Sum_{j=0..floor(k/2)} C(k, 2j) * x^(k-j). - Paul Barry, Jan 22 2005
G.f.: (1-x*y)/((1-x*y)^2 - x^2*y). - Paul D. Hanna, Feb 25 2005
Sum_{k=0..n} x^k*T(n,k)= A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 04 2006, Oct 15 2008, Oct 19 2008
T(n,k) = T(n-1,k-1) + Sum_{i=0..k-1} T(n-2-i,k-1-i); T(0,0)=1; T(n,k)=0 if n < 0 or k < 0 or n < k. E.g.: T(8,5) = T(7,4) + T(6,4) + T(5,3) + T(4,2) + T(3,1) + T(2,0) = 7+15+5+1+0+0 = 28. - Philippe Deléham, Dec 04 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively. - Philippe Deléham, Dec 24 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 14 2008
T(n,k) = A085478(k,n-k). - Philippe Deléham, Dec 02 2008
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 15 2012

A028297 Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).

Original entry on oeis.org

1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0

Views

Author

Keywords

Comments

Rows are of lengths 1, 1, 2, 2, 3, 3, ... (A008619).
This triangle is generated from A118800 by shifting down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. - Gary W. Adamson, Dec 16 2007
Unsigned triangle = A034839 * A007318. - Gary W. Adamson, Nov 28 2008
Triangle, with zeros omitted, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1, 1, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 16 2011
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle A053120 given by A039991 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle (see the Philippe Deléham comment, g.f. and example) this becomes the Riordan triangle (1-x)/(1-2*x), -x^2/(1-2*x). See also the unsigned version A201701 of this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland, Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum( d_(t_1, t_2)* eM_1^t_1 * eM_2^t_2) summed over all length 2 integer partitions of k, i.e., 1*t_1 + 2*t_2 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 2 data (i.e., SM_k = S_k/2 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(2,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2) form an irregular triangle, with one row for each k value starting with k=1. Thus this procedure and associated OEIS sequences A287768, A288199, A288207, A288211, A288245, A288188 are generalizations of Chebyshev polynomials of the first kind. - Gregory Gerard Wojnar, Jul 01 2017

Examples

			Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k     1      2     3      4     5     6   7   8 ....
0:      1
1:      1
2:      2     -1
3:      4     -3
4:      8     -8     1
5:     16    -20     5
6:     32    -48    18     -1
7:     64   -112    56     -7
8:    128   -256   160    -32     1
9:    256   -576   432   -120     9
10:   512  -1280  1120   -400    50    -1
11:  1024  -2816  2816  -1232   220   -11
12:  2048  -6144  6912  -3584   840   -72   1
13:  4096 -13312 16640  -9984  2912  -364  13
14:  8192 -28672 39424 -26880  9408 -1568  98  -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
   1;
   1,   0;
   2,  -1,  0;
   4,  -3,  0,  0;
   8,  -8,  1,  0, 0;
  16, -20,  5,  0, 0, 0;
  32, -48, 18, -1, 0, 0, 0; (End)
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]

Crossrefs

Cf. A028298.
Reflection of A008310, the main entry. With zeros: A039991.
Cf. A053120 (row reversed table including zeros).
Cf. A001333 (row sums 1), A001333 (alternating row sums). - Wolfdieter Lang, Aug 02 2014

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
    Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)

Formula

cos(n*x) = 2 * cos((n-1)*x) * cos(x) - cos((n-2)*x) (from CRC's Multiple-angle relations). - Rick L. Shepherd, Jul 06 2010
G.f.: (1-x) / (1-2x+y*x^2). - Philippe Deléham, Dec 16 2011
Sum_{k=0..n} T(n,k)*x^k = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0, 1, 2, 3, 4, 5, 6, respectively. - Philippe Deléham, Dec 16 2011
T(n,k) = [x^k] hypergeom([1/2 - n/2, -n/2], [1/2], 1 - x). - Peter Luschny, Feb 03 2021
T(n,k) = (-1)^k * 2^(n-1-2*k) * A034807(n,k). - Hoang Xuan Thanh, Jun 21 2025

Extensions

More terms from David W. Wilson
Row length sequence and link to Abramowitz-Stegun added by Wolfdieter Lang, Aug 02 2014

A088137 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The Lucas U(P=2, Q=3) sequence. - R. J. Mathar, Oct 24 2012
Hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 2 - 3/(2 - 3/(2 - 3/(2 - ... - 3/2))) with n 3's. - Greg Dresden, Oct 06 2019
With different signs, 0, 1, -2, 1, 4, -11, 10, 13, -56, 73, 22, -263, 460, ... also the Lucas U(-2,3) sequence. - R. J. Mathar, Jan 08 2013
From Peter Bala, Apr 01 2018: (Start)
The companion Lucas sequence V(n,2,3) is A087455.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = a(n)/A087455(n). Cf. A025172 and A127357. (End)

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
  • Maple
    A[0]:= 0: A[1]:= 1:
    for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:
    seq(A[n],n=0..100); # Robert Israel, Aug 05 2014
  • Mathematica
    LinearRecurrence[{2,-3},{0,1},40] (* Harvey P. Dale, Nov 03 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,3) for n in range(0, 38)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 3^(n/2)*sin(n*atan(sqrt(2)))/sqrt(2).
|3*A087455(n) - A087455(n+1)| = 2*a(n+1) or 3*A087455(n) + A087455(n+1) = 2*a(n+1). - Creighton Dement, Aug 02 2004
G.f.: x/(1 - 2*x + 3*x^2).
E.g.f.: exp(x)*sin(sqrt(2)*x)/sqrt(2).
a(n) = 2*a(n-1) - 3*a(n-2) for n > 1, a(0)=0, a(1)=1.
a(n) = ((1 + i*sqrt(2))^n - (1 - i*sqrt(2))^n)/(2*i*sqrt(2)), where i=sqrt(-1).
a(n) = Im((1 + i*sqrt(2))^n/sqrt(2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)(-2)^k.
3^(n+1) = 9*(A087455(n))^2 + 2*(A087455(n+1))^2 - 2*(a(n+2))^2; 3^n = a(n+1)^2 + 3*a(n)^2 - 2*a(n+1)*a(n) for n > 0 - Creighton Dement, Jan 20 2005
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 3*x)/( x*(4*k+4 - 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n+1) = Sum_{k=0..n} A123562(n,k). - Philippe Deléham, Nov 23 2013
a(n) = n*hypergeom([(1-n)/2,(2-n)/2],[3/2],-2). - Gerry Martens, Sep 03 2023

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A077966 Expansion of 1/(1+2*x^2).

Original entry on oeis.org

1, 0, -2, 0, 4, 0, -8, 0, 16, 0, -32, 0, 64, 0, -128, 0, 256, 0, -512, 0, 1024, 0, -2048, 0, 4096, 0, -8192, 0, 16384, 0, -32768, 0, 65536, 0, -131072, 0, 262144, 0, -524288, 0, 1048576, 0, -2097152, 0, 4194304, 0, -8388608, 0, 16777216, 0, -33554432, 0, 67108864, 0, -134217728, 0, 268435456
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Normally sequences like this are not included, since with the alternating 0's deleted it is already in the database.
Inverse binomial transform of A087455. - Philippe Deléham, Dec 02 2008
Pisano period lengths: 1, 1, 2, 1, 8, 2, 12, 1, 6, 8, 10, 2, 24, 12, 8, 1, 16, 6, 18, 8,... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = (1+(-1)^n)*(-2)^(n/2)/2. - R. J. Mathar, Apr 23 2009
a(n) = ((n+1) mod 2 )*(-2)^floor((n+1)/2). - Wesley Ivan Hurt, Apr 06 2014
E.g.f.: cos(sqrt(2)*x). - G. C. Greubel, Jun 24 2019

A127357 Expansion of 1/(1 - 2*x + 9*x^2).

Original entry on oeis.org

1, 2, -5, -28, -11, 230, 559, -952, -6935, -5302, 51811, 151340, -163619, -1689298, -1906025, 11391632, 39937489, -22649710, -404736821, -605626252, 2431378885, 10313394038, -1255621889
Offset: 0

Views

Author

Paul Barry, Jan 11 2007

Keywords

Comments

Hankel transform of A100193. A member of the family of sequences with g.f. 1/(1-2*x+r^2*x^2) which are the Hankel transforms of the sequences given by Sum_{k=0..n} binomial(2*n,k)*r^(n-k).
From Peter Bala, Apr 01 2018: (Start)
With offset 1, this is the Lucas sequence U(n,2,9). The companion Lucas sequence V(n,2,9) is 2*A025172(n).
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 2 o 2 o ... o 2 (n terms) = 2*A127357(n-1)/A025172(n). Cf. A088137 and A087455. (End)

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=2*a[n-1]-9*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    m:=23; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-2*x+9*x^2))); // Bruno Berselli, Jul 01 2011
    
  • Magma
    [3^n*Evaluate(ChebyshevU(n+1),1/3): n in [0..50]]; // G. C. Greubel, Jan 02 2024
    
  • Maple
    c := 2*sqrt(2): g := exp(x)*(sin(c*x)+c*cos(c*x))/c: ser := series(g,x,32):
    seq(n!*coeff(ser,x,n), n=0..22); # Peter Luschny, Oct 19 2016
  • Mathematica
    RootReduce@Table[3^n (Cos[n ArcTan[2 Sqrt[2]]] + Sin[n ArcTan[2 Sqrt[2]]] Sqrt[2]/4), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
    CoefficientList[Series[1/(1-2x+9x^2),{x,0,40}],x] (* or *)
    LinearRecurrence[ {2,-9},{1,2},40] (* Harvey P. Dale, Mar 15 2022 *)
    Table[3^n*ChebyshevU[n, 1/3], {n,0,40}] (* G. C. Greubel, Jan 02 2024 *)
  • Maxima
    makelist(coeff(taylor(1/(1-2*x+9*x^2), x, 0, n), x, n), n, 0, 22); /* Bruno Berselli, Jul 01 2011 */
    
  • PARI
    Vec(1/(1-2*x+9*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    [lucas_number1(n,2,9) for n in range(1, 24)] # Zerinvary Lajos, Apr 23 2009
    
  • SageMath
    [3^n*chebyshev_U(n,1/3) for n in range(41)] # G. C. Greubel, Jan 02 2024
    

Formula

a(n) = Sum_{k=0..n} binomial(n-k,k)*2^(n-2*k)*(-9)^k.
a(n) = 2*a(n-1) - 9*a(n-2) for n >= 2. - Vincenzo Librandi, Mar 22 2011
a(n) = ((1-2*sqrt(2)*i)^n-(1+2*sqrt(2)*i)^n)*i/(4*sqrt(2)), where i=sqrt(-1). - Bruno Berselli, Jul 01 2011
From Vladimir Reshetnikov, Oct 15 2016: (Start)
a(n) = 3^n*(cos(n*theta) + sin(n*theta)*sqrt(2)/4), theta = arctan(2*sqrt(2)).
E.g.f.: exp(x)*(cos(2*sqrt(2)*x) + sin(2*sqrt(2)*x)*sqrt(2)/4). (End)
a(n) = 2^n*Product_{k=1..n}(1 + 3*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
From G. C. Greubel, Jan 02 2024: (Start)
a(n) = (-1)^n * A025170(n).
a(n) = 3^n * ChebyshevU(n, 1/3). (End)

A168175 Expansion of 1/(1 - 4*x + 7*x^2).

Original entry on oeis.org

1, 4, 9, 8, -31, -180, -503, -752, 513, 7316, 25673, 51480, 26209, -255524, -1205559, -3033568, -3695359, 6453540, 51681673, 161551912, 284435937, 6880364, -1963530103, -7902282960, -17864421119, -16141703756, 60484132809
Offset: 0

Views

Author

Roger L. Bagula, Nov 19 2009

Keywords

Comments

Also the coefficient of i of Q^(n+1), Q being the quaternion 2+i+j+k. The real part of the quaternion power is A213421, see also A087455, A088138, A128018. - Stanislav Sykora, Jun 11 2012
a(n)*(-1)^n gives the coefficient c(7^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (but not for primes 2 and 3) with alpha(x) = x (weight 2) and input c(7) = -4. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727(n) = b(n) where c(7^n) = b((7^n-1)/6) = b(A023000(n)), n >= 0. Proof: The alpha-multiplicity with alpha(1) = 1 and c(1) = 1 leads from p^n = p^(n-1)*p to the recurrence c_n = c*c_(n-1) - a*c(n-2), with c_n = c(p^n), c = c(p) and a = alpha(p). Inputs are c_{-1} = 0 and c_0 = c(1) = 1. This gives the polynomial c_n = sqrt(a)^n * S(n,c/sqrt(a)), with Chebyshev's S-polynomials (A049310). See the Apostol reference, Exercise 6., p. 139. Here p = 7, c = -4. - Wolfdieter Lang, Apr 27 2016

Examples

			G.f. = 1 + 4*x + 9*x^2 + 8*x^3 - 31*x^4 - 180*x^5 - 503*x^6 - 752*x^7 + ... - _Michael Somos_, Feb 23 2020
		

References

  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.

Crossrefs

Programs

  • Magma
    I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
    
  • Mathematica
    CoefficientList[Series[1/(1-4x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {4,-7},{1,4},30] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    {a(n) = my(s=1, t=1); if( n<0, n=-2-n; s=-1; t=1/7); s * t^(n+1) * polcoeff(1 / (1 - 4*x + 7*x^2) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2020 */

Formula

a(n) = (1/2 - i/sqrt(3))*(2 + i*sqrt(3))^n + (1/2 + i/sqrt(3))*(2 - i*sqrt(3))^n (Binet formula), where i is the imaginary unit.
a(n) = 4*a(n-1) - 7*a(n-2).
a(n) = sqrt(7)^n * S(n, 4/sqrt(7)), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Apr 27 2016
E.g.f.: (2*sqrt(3)*sin(sqrt(3)*x) + 3*cos(sqrt(3)*x))*exp(2*x)/3. - Ilya Gutkovskiy, Apr 27 2016
a(n) = (-1) * 7^(n+1) * a(-2-n) for all n in Z. - Michael Somos, Feb 23 2020

A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2011

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015

Examples

			The triangle T(n,k) begins:
  n\k      0     1     2     3     4    5   6  7 8 9 10 11 ...
  0:       1
  1:       1     0
  2:       2     1     0
  3:       4     3     0     0
  4:       8     8     1     0     0
  5:      16    20     5     0     0    0
  6:      32    48    18     1     0    0   0
  7:      64   112    56     7     0    0   0  0
  8:     128   256   160    32     1    0   0  0 0
  9:     256   576   432   120     9    0   0  0 0 0
  10:    512  1280  1120   400    50    1   0  0 0 0  0
  11:   1024  2816  2816  1232   220   11   0  0 0 0  0  0
  ...  reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Diagonals sums are in A052980.
Cf. A028297, A081265, A124182, A131577, A039991 (zero-columns deleted, unsigned and zeros appended).
Cf. A028297 (signed version, zeros deleted). Cf. A034839.

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)

Extensions

Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014

A025172 Let phi = arccos(1/3), the dihedral angle of the regular tetrahedron. Then cos(n*phi) = a(n)/3^n.

Original entry on oeis.org

1, 1, -7, -23, 17, 241, 329, -1511, -5983, 1633, 57113, 99529, -314959, -1525679, -216727, 13297657, 28545857, -62587199, -382087111, -200889431, 3037005137, 7882015153, -11569015927, -94076168231, -84031193119, 678623127841, 2113526993753
Offset: 0

Keywords

Comments

Used when showing that the regular simplex is not "scisssors-dissectible" to a cube, thus answering Hilbert's third problem.
From Peter Bala, Apr 01 2018: (Start)
This sequence is (1/2) * the Lucas sequence V(n,2,9). The companion Lucas sequence U(n,2,9) is A127357.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 2 o 2 o ... o 2 (n terms) = 2*A127357(n-1)/A025172(n). Cf. A088137 and A087455. (End)

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then RETURN(1); fi; 2*f(n-1)-9*f(n-2); end;
  • Mathematica
    Table[ n/2 3^n GegenbauerC[ n, 1/3 ], {n, 24} ]
    CoefficientList[Series[(1 - x)/(1 - 2 x + 9 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2013 *)
    LinearRecurrence[{2,-9},{1,1},30] (* Harvey P. Dale, Jan 30 2016 *)
  • PARI
    {a(n)= if(n<0, 0, 3^(n-1)* subst(3* poltchebi(abs(n)), x, 1/3))} /* Michael Somos, Mar 14 2007 */

Formula

a(0) = 1, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - 9*a(n-2). - Warut Roonguthai, Oct 11 2005
a(n) = (1/2)*(1-2*i*2^(1/2))^n+(1/2)*(1+2*i*2^(1/2))^n, where i=sqrt(-1). - Vladeta Jovovic, Apr 19 2003
a(n) is the permanent of the matrix M^n, where M = [i, 2; 1, i]. - Simone Severini, Apr 27 2007
a(n) = Product_{i=1..n} (2 - tan((i-1/2)*Pi/(2*n))^2). - Gerry Martens, May 26 2011
G.f.: (1-x)/(1-2*x+9*x^2). - Colin Barker, Jun 21 2012
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(8*k+1)/(x*(8*k+9) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013
E.g.f.: exp(x)*cos(2*sqrt(2)*x). - Vladimir Reshetnikov, Oct 15 2016
a(n) = A127357(n)-A127357(n-1). - R. J. Mathar, Apr 07 2022

Extensions

Better description from Vladeta Jovovic, Apr 19 2003
Edited by N. J. A. Sloane, Feb 22 2007. Among other things, I changed the offset and the beginning of the sequence, so some of the formulas may need to be adjusted slightly.

A213421 Real part of Q^n, Q being the quaternion 2+i+j+k.

Original entry on oeis.org

1, 2, 1, -10, -47, -118, -143, 254, 2017, 6290, 11041, 134, -76751, -307942, -694511, -622450, 2371777, 13844258, 38774593, 58188566, -38667887, -561991510, -1977290831, -3975222754, -2059855199, 19587138482
Offset: 0

Author

Stanislav Sykora, Jun 11 2012

Keywords

Crossrefs

Programs

  • Maple
    #A213421
    seq(simplify(1/2*((2+I*sqrt(3))^n+(2-I*sqrt(3))^n)), n = 0 .. 25); # Peter Bala, Mar 29 2015
  • PARI
    QuaternionToN(a,b,c,d,nmax) = {local (C);C = matrix(nmax+1,4);C[1,1]=1;for(n=2,nmax+1,C[n,1]=a*C[n-1,1]-b*C[n-1,2]-c*C[n-1,3]-d*C[n-1,4];C[n,2]=b*C[n-1,1]+a*C[n-1,2]+d*C[n-1,3]-c*C[n-1,4];C[n,3]=c*C[n-1,1]-d*C[n-1,2]+a*C[n-1,3]+b*C[n-1,4];C[n,4]=d*C[n-1,1]+c*C[n-1,2]-b*C[n-1,3]+a*C[n-1,4];);return (C);}
    Q=QuaternionToN(2,1,1,1,1000);
    for(n=1,#Q[,1],write("A213421.txt",n-1," ",Q[n,1]));

Formula

Conjecture: G.f. (1-2x)/(1-4x+7x^2). a(n) = A168175(n)-2*A168175(n-1). - R. J. Mathar, Jun 25 2012
From Peter Bala, Mar 29 2015: (Start)
The above o.g.f. is correct; this is the Lucas sequence V_n(4,7).
a(n) = Re( (2 + sqrt(3)*i)^n )= 1/2*( (2 + sqrt(3)*i)^n + (2 - sqrt(3)*i)^n ).
a(n) = 1/2 * trace( [ 2 + i, 1 + i; -1 + i, 2 - i ]^n ) = 1/2 * trace( [ 2 , sqrt(3)*i ; sqrt(3)*i, 2 ]^n ).
a(n) = 4*a(n-1) - 7*a(n-2) with a(0) = 1, a(1) = 2. (End)
Showing 1-10 of 15 results. Next