cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002002 a(n) = Sum_{k=0..n-1} binomial(n,k+1) * binomial(n+k,k).

Original entry on oeis.org

0, 1, 5, 25, 129, 681, 3653, 19825, 108545, 598417, 3317445, 18474633, 103274625, 579168825, 3256957317, 18359266785, 103706427393, 586889743905, 3326741166725, 18885056428537, 107347191941249, 610916200215241
Offset: 0

Views

Author

Keywords

Comments

From Benoit Cloitre, Jan 29 2002: (Start)
Array interpretation (first row and column are the natural numbers):
1 2 3 ..j ... if b(i,j) = b(i-1,j) + b(i-1,j-1) + b(i,j-1) then a(n+1) = b(n,n)
2 5 .........
.............
i........... b(i,j)
(End)
Number of ordered trees with 2n edges, having root of even degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
Coefficient of x^n in ((1-x)/(1-2x))^n, n>0. - Michael Somos, Sep 24 2003
Number of peaks in all Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0). Example: a(2)=5 because HH, HU*D, U*DH, UHD, U*DU*D, UU*DD contain 5 peaks (indicated by *). - Emeric Deutsch, Dec 06 2003
a(n) is the total number of HHs in all Schroeder (n+1)-paths. Example: a(2)=5 because UH*HD, H*H*H, UDH*H, H*HUD contain 5 HHs (indicated by *) and the other 18 Schroeder 3-paths contain no HHs. - David Callan, Jul 03 2006
a(n) is the total number of Hs in all Schroeder n-paths. Example: a(2)=5 as the Schroeder 2-paths are HH, DUH, DHU, HDU, DUDU and DDUU, and there are 5 H's. In general, a(n) is the total number of H..Hs (m+1 H's) in all Schroeder (n+m)-paths. - FUNG Cheok Yin, Jun 19 2021
a(n) is the number of points in Z^(n+1) that are L1 (Manhattan) distance <= n from the origin, or the number of points in Z^n that are L1 distance <= n+1 from the origin. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the (n+1)-dimensional cubic lattice as well as the (n+1)-st term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 25 2022 [Edited by Peter Munn, Jan 05 2023]

Examples

			G.f. = x + 5*x^2 + 25*x^3 + 129*x^4 + 681*x^5 + 3653*x^6 + 19825*x^7 + 108545*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A002003, Cf. A047781, A001003.
a(n)=T(n, n+1), array T as in A050143.
a(n)=T(n, n+1), array T as in A064861.
Half the first differences of central Delannoy numbers (A001850).
a(n)=T(n, n+1), array T as in A008288.

Programs

  • Magma
    [&+[Binomial(n,k+1)*Binomial(n+k,k): k in [0..n]]: n in [0..21]];  // Bruno Berselli, May 19 2011
    
  • Maple
    A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else A064861(n,k-1)+(3/2-1/2*(-1)^(n+k))*A064861(n-1,k); fi; end; seq(A064861(i,i+1),i=1..40);
  • Mathematica
    CoefficientList[Series[((1-x)/Sqrt[1-6x+x^2]-1)/2, {x,0,30}],x]  (* Harvey P. Dale, Mar 17 2011 *)
    a[ n_] := n Hypergeometric2F1[ n + 1, -n + 1, 2, -1] (* Michael Somos, Aug 09 2011 *)
    a[ n_] := With[{m = Abs@n}, Sign[n] Sum[ Binomial[ m, k] Binomial[ m + k - 1, m], {k, m}]]; (* Michael Somos, Aug 09 2011 *)
  • Maxima
    makelist(sum(binomial(n,k+1)*binomial(n+k,k), k, 0, n), n, 0, 21); /* Bruno Berselli, May 19 2011 */
    
  • PARI
    {a(n) = my(m = abs(n)); sign( n) * sum( k=0, m-1, binomial( m, k+1) * binomial( m+k, k))}; /* Michael Somos, Aug 09 2011 */
    
  • PARI
    /* L.g.f.: Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*(1-x)^(-n)/n! */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)/(1-x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, May 17 2015
  • Sage
    a = lambda n: hypergeometric([1-n, -n], [1], 2) if n>0 else 0
    [simplify(a(n)) for n in range(22)] # Peter Luschny, Nov 19 2014
    

Formula

G.f.: ((1-x)/sqrt(1-6*x+x^2)-1)/2. - Emeric Deutsch, Aug 02 2002
E.g.f.: exp(3*x)*(BesselI(0, 2*sqrt(2)*x)+sqrt(2)*BesselI(1, 2*sqrt(2)*x)). - Vladeta Jovovic, Mar 28 2004
a(n) = Sum_{k=0..n-1} binomial(n-1, k)*binomial(n+k, k+1). - Paul Barry, Sep 20 2004
a(n) = n * hypergeom([n + 1, -n + 1], [2], -1) = ((n+1)*LegendreP(n+1,3) - (5*n+3)*LegendreP(n,3))/(2*n) for n > 0. - Mark van Hoeij, Jul 12 2010
G.f.: x*d/dx log(1/(1-x*A006318(x))). - Vladimir Kruchinin, Apr 19 2011
a(n) = -a(-n) for all n in Z. - Michael Somos, Aug 09 2011
G.f.: -1 + 1 / ( 1 - x / (1 - 4*x / (1 - x^2 / (1 - 4*x / (1 - x^2 / (1 - 4*x / ...)))))). - Michael Somos, Jan 03 2013
a(n) = Sum_{k=0..n} A201701(n,k)^2 = Sum_{k=0..n} A124182(n,k)^2 for n > 0. - Philippe Deléham, Dec 05 2011
D-finite with recurrence: 2*(6*n^2-12*n+5)*a(n-1)-(n-2)*(2*n-1)*a(n-2)-n*(2*n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
a(n) ~ (3+2*sqrt(2))^n/(2^(5/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 04 2012
D-finite (an alternative): n*a(n) = (6-n)*a(n-6) + (14*n-72)*a(n-5) + (264-63*n)*a(n-4) + 100*(n-3)*a(n-3) + (114-63*n)*a(n-2) + 2*(7*n-6)*a(n-1), n >= 7. - Fung Lam, Feb 05 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} (-2)^k*binomial(n-1,k)*binomial(n+k,k) and n^3*a(n) = Sum_{k=0..n-1} (4*k^3+4*k^2+4*k+1)*binomial(n-1,k)*binomial(n+k,k). For each of the two equalities, both sides satisfy the same recurrence -- this follows from the Zeilberger algorithm. - Zhi-Wei Sun, Aug 30 2014
a(n) = hypergeom([1-n, -n], [1], 2) for n >= 1. - Peter Luschny, Nov 19 2014
Logarithmic derivative of A001003 (little Schroeder numbers). - Paul D. Hanna, May 17 2015
L.g.f.: L(x) = Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1) * (1-x)^(-n) / n! = Sum_{n>=1} a(n)*x^n/n where exp(L(x)) = g.f. of A001003. - Paul D. Hanna, May 17 2015
a(n+1) = (1/2^(n+1)) * Sum_{k >= 0} (1/2^k) * binomial(n + k, n)*binomial(n + k, n + 1). - Peter Bala, Mar 02 2017
2*a(n) = A110170(n), n > 0. - R. J. Mathar, Feb 10 2022
a(n) = (LegendreP(n,3) - LegendreP(n-1,3))/2. - Mark van Hoeij, Jul 14 2022
D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(7*n-16)*a(n-2) +(-n+3)*a(n-3)=0. - R. J. Mathar, Aug 01 2022
From Peter Bala, Nov 08 2022: (Start)
a(n) = (-1)^(n+1)*hypergeom( [n+1, -n+1], [1], 2) for n >= 1.
The Gauss congruences hold: a(n*p^r) == a(n^p^(r-1)) (mod p^r) for all primes p and all positive integers n and r. (End)
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 1} binomial(2*n-1, n)*x^n/(1 - x)^(2*n) = x + 5*x^2 + 25*x^3 + 129*x^4 + ....
Row sums of A253283. (End)

Extensions

More terms from Clark Kimberling

A146559 Expansion of (1-x)/(1 - 2*x + 2*x^2).

Original entry on oeis.org

1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, 256, 0, -512, -1024, -1024, 0, 2048, 4096, 4096, 0, -8192, -16384, -16384, 0, 32768, 65536, 65536, 0, -131072, -262144, -262144, 0, 524288, 1048576, 1048576, 0, -2097152, -4194304
Offset: 0

Views

Author

Philippe Deléham, Nov 01 2008

Keywords

Comments

Partial sums of this sequence give A099087. - Philippe Deléham, Dec 01 2008
From Philippe Deléham, Feb 13 2013, Feb 20 2013: (Start)
Terms of the sequence lie along the right edge of the triangle
(1)
(1)
2 (0)
2 (-2)
4 0 (-4)
4 -4 (-4)
8 0 -8 (0)
8 -8 -8 (8)
16 0 -16 0 (16)
16 -16 -16 16 (16)
32 0 -32 0 32 (0)
32 -32 -32 32 32 (-32)
64 0 -64 0 64 0 (-64)
...
Row sums of triangle are in A104597.
(1+i)^n = a(n) + A009545(n)*i where i = sqrt(-1). (End)
From Tom Copeland, Nov 08 2014: (Start)
This array is a member of a Catalan family (A091867) related by compositions of C(x)= (1-sqrt(1-4*x))/2, an o.g.f. for the Catalan numbers A000108, its inverse Cinv(x) = x(1-x), and the special linear fractional (Möbius) transformation P(x,t) = x / (1+t*x) with inverse P(x,-t) in x.
O.g.f.: G(x) = P[P[Cinv(x),-1],-1] = P[Cinv(x),-2] = x*(1-x)/(1 - 2*x*(1-x)) = x*A146599(x).
Ginv(x) = C[P(x,2)] = (1 - sqrt(1-4*x/(1+2*x)))/2 = x*A126930(x).
G(-x) = -(x*(1+x) - 2*(x*(1+x))^2 + 2^2*(x*(1+x))^3 - ...), and so this array contains the -row sums of A030528 * Diag(1, (-2)^1, 2^2, (-2)^3, ...).
The inverse of -G(-x) is -C[-P(x,-2)]= (-1 + sqrt(1+4*x/(1-2*x)))/2, an o.g.f. for A210736 with a(0) set to zero there. (End)
{A146559, A009545} is the difference analog of {cos(x), sin(x)}. (Cf. the Shevelev link.) - Vladimir Shevelev, Jun 08 2017

Examples

			G.f. = 1 + x - 2*x^3 - 4*x^4 - 4*x^5 + 8*x^7 + 16*x^8 + 16*x^9 - 32*x^11 - 64*x^12 - ...
		

Crossrefs

Programs

  • Magma
    I:=[1,1,0]; [n le 3 select I[n] else 2*Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    G(x):=exp(x)*cos(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..44 ); # Zerinvary Lajos, Apr 05 2009
    seq(2^(n/2)*cos(Pi*n/4), n=0..44); # Peter Luschny, Oct 09 2021
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+2x^2),{x,0,50}],x] (* or *) LinearRecurrence[{2,-2},{1,1},50] (* Harvey P. Dale, Oct 13 2011 *)
  • PARI
    Vec((1-x)/(1-2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2012
    
  • Python
    def A146559(n): return ((1, 1, 0, -2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
  • Sage
    def A146559():
        x, y = -1, 0
        while True:
            yield -x
            x, y = x - y, x + y
    a = A146559(); [next(a) for i in range(51)]  # Peter Luschny, Jul 11 2013
    
  • SageMath
    def A146559(n): return 2^(n/2)*chebyshev_T(n, 1/sqrt(2))
    [A146559(n) for n in range(51)] # G. C. Greubel, Apr 17 2023
    

Formula

a(0) = 1, a(1) = 1, a(n) = 2*a(n-1) - 2*a(n-2) for n>1.
a(n) = Sum_{k=0..n} A124182(n,k)*(-2)^(n-k).
a(n) = Sum_{k=0..n} A098158(n,k)*(-1)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = (-1)^n*A009116(n). - Philippe Deléham, Dec 01 2008
E.g.f.: exp(x)*cos(x). - Zerinvary Lajos, Apr 05 2009
E.g.f.: cos(x)*exp(x) = 1+x/(G(0)-x) where G(k)=4*k+1+x+(x^2)*(4*k+1)/((2*k+1)*(4*k+3)-(x^2)-x*(2*k+1)*(4*k+3)/( 2*k+2+x-x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2011
a(n) = Re( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012
G.f.: 1 / (1 - x / (1 + x / (1 - 2*x))) = 1 + x / (1 + 2*x^2 / (1 - 2*x)). - Michael Somos, Jan 03 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(m+k) = a(m)*a(k) - A009545(m)*A009545(k). - Vladimir Shevelev, Jun 08 2017
a(n) = 2^(n/2)*cos(Pi*n/4). - Peter Luschny, Oct 09 2021
a(n) = 2^(n/2)*ChebyshevT(n, 1/sqrt(2)). - G. C. Greubel, Apr 17 2023
From Chai Wah Wu, Feb 15 2024: (Start)
a(n) = Sum_{n=0..floor(n/2)} binomial(n,2j)*(-1)^j = A121625(n)/n^n.
a(n) = 0 if and only if n == 2 mod 4.
(End)

A028297 Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).

Original entry on oeis.org

1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0

Views

Author

Keywords

Comments

Rows are of lengths 1, 1, 2, 2, 3, 3, ... (A008619).
This triangle is generated from A118800 by shifting down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. - Gary W. Adamson, Dec 16 2007
Unsigned triangle = A034839 * A007318. - Gary W. Adamson, Nov 28 2008
Triangle, with zeros omitted, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1, 1, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 16 2011
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle A053120 given by A039991 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle (see the Philippe Deléham comment, g.f. and example) this becomes the Riordan triangle (1-x)/(1-2*x), -x^2/(1-2*x). See also the unsigned version A201701 of this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland, Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum( d_(t_1, t_2)* eM_1^t_1 * eM_2^t_2) summed over all length 2 integer partitions of k, i.e., 1*t_1 + 2*t_2 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 2 data (i.e., SM_k = S_k/2 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(2,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2) form an irregular triangle, with one row for each k value starting with k=1. Thus this procedure and associated OEIS sequences A287768, A288199, A288207, A288211, A288245, A288188 are generalizations of Chebyshev polynomials of the first kind. - Gregory Gerard Wojnar, Jul 01 2017

Examples

			Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k     1      2     3      4     5     6   7   8 ....
0:      1
1:      1
2:      2     -1
3:      4     -3
4:      8     -8     1
5:     16    -20     5
6:     32    -48    18     -1
7:     64   -112    56     -7
8:    128   -256   160    -32     1
9:    256   -576   432   -120     9
10:   512  -1280  1120   -400    50    -1
11:  1024  -2816  2816  -1232   220   -11
12:  2048  -6144  6912  -3584   840   -72   1
13:  4096 -13312 16640  -9984  2912  -364  13
14:  8192 -28672 39424 -26880  9408 -1568  98  -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
   1;
   1,   0;
   2,  -1,  0;
   4,  -3,  0,  0;
   8,  -8,  1,  0, 0;
  16, -20,  5,  0, 0, 0;
  32, -48, 18, -1, 0, 0, 0; (End)
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]

Crossrefs

Cf. A028298.
Reflection of A008310, the main entry. With zeros: A039991.
Cf. A053120 (row reversed table including zeros).
Cf. A001333 (row sums 1), A001333 (alternating row sums). - Wolfdieter Lang, Aug 02 2014

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
    Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)

Formula

cos(n*x) = 2 * cos((n-1)*x) * cos(x) - cos((n-2)*x) (from CRC's Multiple-angle relations). - Rick L. Shepherd, Jul 06 2010
G.f.: (1-x) / (1-2x+y*x^2). - Philippe Deléham, Dec 16 2011
Sum_{k=0..n} T(n,k)*x^k = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0, 1, 2, 3, 4, 5, 6, respectively. - Philippe Deléham, Dec 16 2011
T(n,k) = [x^k] hypergeom([1/2 - n/2, -n/2], [1/2], 1 - x). - Peter Luschny, Feb 03 2021
T(n,k) = (-1)^k * 2^(n-1-2*k) * A034807(n,k). - Hoang Xuan Thanh, Jun 21 2025

Extensions

More terms from David W. Wilson
Row length sequence and link to Abramowitz-Stegun added by Wolfdieter Lang, Aug 02 2014

A006495 Real part of (1 + 2*i)^n, where i is sqrt(-1).

Original entry on oeis.org

1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 237, 6469, 11753, -8839, -76443, -108691, 164833, 873121, 922077, -2521451, -9653287, -6699319, 34867797, 103232189, 32125393, -451910159, -1064447283, 130656229, 5583548873
Offset: 0

Views

Author

Keywords

Comments

Row sums of the Euler related triangle A117411. Partial sums are A006495. - Paul Barry, Mar 16 2006
Binomial transform of [1, 0, -4, 0, 16, 0, -64, 0, 256, 0, ...], i.e. powers of -4 with interpolated zeros. - Philippe Deléham, Dec 02 2008
The absolute values of these numbers are the odd numbers y such that x^2 + y^2 = 5^n with x and y coprime. See A098122. - T. D. Noe, Apr 14 2011
Pisano period lengths: 1, 1, 8, 1, 4, 8, 48, 4, 24, 4, 60, 8, 12, 48, 8, 8, 16, 24, 90, 4, ... - R. J. Mathar, Aug 10 2012
Multiplied by a signed sequence of 2's we obtain 2, -2, -6, 22, -14, -82, 234, -58, -1054, 2398, 474, -12938, ..., the Lucas V(-2,5) sequence. - R. J. Mathar, Jan 08 2013

Examples

			1 + x - 3*x^2 - 11*x^3 - 7*x^4 + 41*x^5 + 117*x^6 + 29*x^7 - 527*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006496, A045873 (partial sums).

Programs

  • Magma
    A006495:=func< n | Integers()!Real((1+2*Sqrt(-1))^n) >; [ A006495(n): n in [0..30] ]; // Klaus Brockhaus, Feb 04 2011
    
  • Maple
    a := n -> hypergeom([1/2 - n/2, -n/2], [1/2], -4):
    seq(simplify(a(n)), n=0..28); # Peter Luschny, Jul 26 2020
  • Mathematica
    Table[Re[(1+2I)^n],{n,0,29}] (* Giovanni Resta, Mar 28 2006 *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (4*k + 1) * A[k-1] - 8 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • PARI
    a(n) = real( (1 + 2*I)^n ) \\ Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    {a(n) = my(A=1);
    A = sum(m=0, n+1, (1 + (-1)^m*I)^m * x^m / (1 - (-1)^m*I*x +x*O(x^n))^(m+1) ); polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2019
  • Sage
    [lucas_number2(n,2,5)/2 for n in range(0,30)] # Zerinvary Lajos, Jul 08 2008
    

Formula

a(n) = (1/2)*((1+2*i)^n + (1-2*i)^n). - Benoit Cloitre, Oct 28 2002
From Paul Barry, Mar 16 2006: (Start)
G.f.: (1-x)/(1 - 2*x + 5*x^2);
a(n) = 2*a(n-1) - 5*a(n-2);
a(n) = 5^(n/2)*cos(n*atan(1/3) + Pi*n/4);
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,k-j)*C(j,n-k)*(-4)^(n-k). (End)
A000351(n) = a(n)^2 + A006496(n)^2. - Fabrice Baubet (intih(AT)free.fr), May 28 2007
a(n) = upper left and lower right terms of the 2 X 2 matrix [1,-2; 2,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-5)^(n-k). - Philippe Deléham, Nov 01 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-4)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = (4*n+5)*a(n-1) - 8*Sum_{k=1..n} a(k-1)*a(n-k) if n > 0. - Michael Somos, Jul 23 2011
E.g.f.: exp(x)*cos(2*x). - Sergei N. Gladkovskii, Jul 22 2012
a(n) = 5^(n/2) * cos(n*arctan(2)). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k+1)/(x*(4*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
From Paul D. Hanna, Mar 09 2019: (Start)
G.f.: Sum_{n>=0} (1 + (-1)^n*i)^n * x^n / (1 - (-1)^n*i*x)^(n+1).
G.f.: Sum_{n>=0} (1 - (-1)^n*i)^n * x^n / (1 + (-1)^n*i*x)^(n+1).
(End)
a(n) = hypergeom([1/2 - n/2, -n/2], [1/2], -4). - Peter Luschny, Jul 26 2020

Extensions

Signs from Christian G. Bower, Nov 15 1998
Corrected by Giovanni Resta, Mar 28 2006

A081277 Square array of unsigned coefficients of Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 4, 1, 7, 18, 20, 8, 1, 9, 32, 56, 48, 16, 1, 11, 50, 120, 160, 112, 32, 1, 13, 72, 220, 400, 432, 256, 64, 1, 15, 98, 364, 840, 1232, 1120, 576, 128, 1, 17, 128, 560, 1568, 2912, 3584, 2816, 1280, 256, 1, 19, 162, 816, 2688, 6048, 9408, 9984, 6912
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Comments

Formatted as a triangular array, this is [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] (see construction in A084938 ). - Philippe Deléham, Aug 09 2005
Antidiagonal sums are in A025192. - Philippe Deléham, Dec 04 2006
Binomial transform of n-th row of the triangle (followed by zeros) = n-th row of the A142978 array and n-th column of triangle A104698. - Gary W. Adamson, Jul 17 2008
When formatted as a triangle, A038763=fusion of polynomial sequences (x+1)^n and (x+1)^n; see A193722 for the definition of fusion of two polynomial sequences or triangular arrays. Row n of A038763, as a triangle, consists of coefficients of the product (x+1)*(x+2)^n. - Clark Kimberling, Aug 04 2011

Examples

			Rows begin
  1, 1,  2,   4,   8, ...
  1, 3,  8,  20,  48, ...
  1, 5, 18,  56, 160, ...
  1, 7, 32, 120, 400, ...
  1, 9, 50, 220, 840, ...
  ...
As a triangle:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  8,  4;
  1,  7, 18, 20,  8;
		

Crossrefs

Cf. A079628.
Cf. A167580 and A167591. - Johannes W. Meijer, Nov 23 2009
Cf. A053120 (antidiagonals give signed version) and A124182 (skewed version). - Mathias Zechmeister, Jul 26 2022

Programs

  • Mathematica
    (* Program generates triangle A081277 as the self-fusion of Pascal's triangle *)
    z = 8; a = 1; b = 1; c = 1; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A081277 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* abs val of A118800 *)
    Factor[w[6, x]]
    (* Clark Kimberling, Aug 04 2011 *)

Formula

T(n, k) = (n+2k)*binomial(n+k-1, k-1)*2^(n-1)/k, k > 0.
T(n, 0) defined by g.f. (1-x)/(1-2x). Other rows are defined by (1-x)/(1-2x)^n.
T(n, 0) = 0 if n < 0, T(0, k) = 0 if k < 0, T(0, 0) = T(1, 0) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k); for example, 160 = 48 + 2*56 for n = 4 and k = 2. -Philippe Deléham, Aug 12 2005
G.f. of the triangular interpretation: (-1+x*y)/(-1+2*x*y+x). - R. J. Mathar, Aug 11 2015

A087455 Expansion of (1 - x)/(1 - 2*x + 3*x^2) in powers of x.

Original entry on oeis.org

1, 1, -1, -5, -7, 1, 23, 43, 17, -95, -241, -197, 329, 1249, 1511, -725, -5983, -9791, -1633, 26107, 57113, 35905, -99529, -306773, -314959, 290401, 1525679, 2180155, -216727, -6973919, -13297657, -5673557, 28545857, 74112385, 62587199, -97162757, -382087111, -472685951
Offset: 0

Views

Author

Simone Severini, Oct 23 2003

Keywords

Comments

Type 2 generalized Gaussian Fibonacci integers.
Binomial transform of A077966. - Philippe Deléham, Dec 02 2008
The real component of Q^n, where Q is the quaternion 1 + 0*i + 1*j + 1*k. - Stanislav Sykora, Jun 11 2012
If entries are multiplied by 2*(-1)^n, which gives 2, -2, -2, 10, -14, -2, 46, -86, 34, 190, -482, 394, ..., we obtain the Lucas V(-2,3) sequence. - R. J. Mathar, Jan 08 2013
The real component of (1 + sqrt(-2))^n. - Giovanni Resta, Apr 01 2014
It is an open question whether or not this sequence satisfies Benford's law [Berger-Hill, 2017; Arno Berger, email, Jan 06 2017]. - N. J. A. Sloane, Feb 08 2017
Given an alternated cubic honeycomb with a planar dissection along a plane from edge to opposite edge of the containing cube. The sequence (1 + sqrt(-2))^n contains a real component representing distance along the edge of the tetrahedron/octahedron and an imaginary component representing the orthogonal distance along the sqrt(2) axis in a tetrahedron/octahedron, this generates a unique cevian (line from the apical vertex to a vertex on the triangular tiling composing the opposite face) in this plane with length (sqrt(3))^n. - Jason Pruski, Sep 04 2017, Jan 08 2018
From Peter Bala, Apr 01 2018: (Start)
This sequence is the Lucas sequence V(n,2,3). The companion Lucas sequence U(n,2,3) is A088137.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = A088137(n)/a(n). Cf. A025172 and A127357. (End)

Examples

			G.f. = 1 + x - x^2 - 5*x^3 - 7*x^4 + x^5 + 23*x6 + 43*x^7 + 17*x^8 - 95*x^9 + ...
		

References

  • Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
  • S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else 2*Self(n-1) -3*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 03 2024
    
  • Maple
    Digits:=100; a:=n->round(abs(evalf((3^(n/2))*cos(n*arctan(sqrt(2))))));
    # alternative:
    a:= gfun:-rectoproc({a(n) = 2*a(n-1) - 3*a(n-2),a(0)=1,a(1)=1},a(n),remember):
    map(a, [$0..100]); # Robert Israel, Jun 23 2015
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+3*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Apr 01 2014 *)
    a[ n_] := ChebyshevT[ n, 1/Sqrt[3]] Sqrt[3]^n // Simplify; (* Michael Somos, May 15 2015 *)
    LinearRecurrence[{2,-3},{1,1},50] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    {a(n) = real( (1 + quadgen(-8))^n )}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    {a(n) = real( subst( poltchebi(n), 'x, quadgen(12) / 3) * quadgen(12)^n)}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    a(n)=simplify(polchebyshev(n,,quadgen(12)/3)*quadgen(12)^n) \\ Charles R Greathouse IV, Jun 26 2013
    
  • SageMath
    [sqrt(3)^n*chebyshev_T(n, 1/sqrt(3)) for n in range(41)] # G. C. Greubel, Jan 03 2024

Formula

a(n) = (3^(n/2))*cos(n*arctan(sqrt(2))). - Paul Barry, Oct 23 2003
From Paul Barry, Sep 03 2004: (Start)
a(n) = 2*a(n-1) - 3*a(n-2).
a(n) = (-1)^n*Sum_{m=0..n} binomial(n, m)*Sum_{k=0..n} binomial(m, 2k)2^(m-k).
Binomial transform of 1/(1 + 2*x^2), or (1, 0, -2, 0, 4, 0, -8, 0, 16, ...). (End)
a(n+1) = a(n+2) - 2*A088137(n+1), a(n+1) = A088137(n+2) - A088137(n+1). - Creighton Dement, Oct 28 2004
a(n) = upper left and lower right terms of [1,-2, 1,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-2)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-3)^(n-k). - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = a(-n) * 3^n for all n in Z. - Michael Somos, Aug 25 2014
E.g.f.: (1/2)*(exp((1 - i*sqrt(2))*x) + exp((1 + i*sqrt(2))*x)), where i is the imaginary unit. - Stefano Spezia, Jul 17 2019

Extensions

The explicit formula was given by Paul Barry.
Corrected and extended by N. J. A. Sloane, Aug 01 2004
More terms from Creighton Dement, Jul 31 2004

A138230 Expansion of (1-x)/(1 - 2*x + 4*x^2).

Original entry on oeis.org

1, 1, -2, -8, -8, 16, 64, 64, -128, -512, -512, 1024, 4096, 4096, -8192, -32768, -32768, 65536, 262144, 262144, -524288, -2097152, -2097152, 4194304, 16777216, 16777216, -33554432, -134217728, -134217728, 268435456, 1073741824, 1073741824, -2147483648, -8589934592
Offset: 0

Views

Author

Paul Barry, Mar 06 2008

Keywords

Comments

In general, the expansion of (1-x)/(1 - 2*x + (m+1)*x^2) has general term given by a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*(-m)^k = ((1+sqrt(-m))^n + (1-sqrt(-m))^n)/2.
Binomial transform of [1, 0, -3, 0, 9, 0, -27, 0, 81, 0, ...] = powers of -3 with interpolated zeros. - Philippe Deléham, Dec 02 2008

Crossrefs

Programs

  • Magma
    [2^n*Evaluate(ChebyshevFirst(n), 1/2): n in [0..30]]; // G. C. Greubel, Feb 11 2023
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,-4},{1,1},30] (* Harvey P. Dale, Nov 11 2014 *)
  • SageMath
    [2^n*chebyshev_T(n,1/2) for n in range(31)] # G. C. Greubel, Feb 11 2023

Formula

From Philippe Deléham, Nov 14 2008: (Start)
a(n) = 2*a(n-1) - 4*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A098158(n,k)*(-3)^(n-k). (End)
a(n) = Sum_{k=0..n} A124182(n,k)*(-4)^(n-k). - Philippe Deléham, Nov 15 2008
a(n) = 2^n*cos(Pi*n/3). - Richard Choulet, Nov 19 2008
a(n) = -8*a(n-3). - Paul Curtz, Apr 22 2011
From Sergei N. Gladkovskii, Jul 27 2012: (Start)
G.f.: G(0) where G(k) = 1 + x/(1 + 2*x/(1 - 2*x - 4*x/(4*x + 1/G(k+1)))); (continued fraction).
E.g.f.: exp(x)*cos(sqrt(3)*x) = G(0) where G(k) = 1 + x/(3*k+1 + 2*x*(3*k+1)/(3*k+2 - 2*x - 4*x*(3*k+2)/(4*x + 3*(k+1)/G(k+1)))); (continued fraction). (End)
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = A088138(n+1) - A088138(n). - R. J. Mathar, Mar 04 2018
a(n) = (-1)^n*A104537(n). - R. J. Mathar, May 21 2019
a(n) = 2^(n-1)*A087204(n). - G. C. Greubel, Feb 11 2023
Sum_{n>=0} 1/a(n) = 4/3. - Amiram Eldar, Feb 14 2023

A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2011

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015

Examples

			The triangle T(n,k) begins:
  n\k      0     1     2     3     4    5   6  7 8 9 10 11 ...
  0:       1
  1:       1     0
  2:       2     1     0
  3:       4     3     0     0
  4:       8     8     1     0     0
  5:      16    20     5     0     0    0
  6:      32    48    18     1     0    0   0
  7:      64   112    56     7     0    0   0  0
  8:     128   256   160    32     1    0   0  0 0
  9:     256   576   432   120     9    0   0  0 0 0
  10:    512  1280  1120   400    50    1   0  0 0 0  0
  11:   1024  2816  2816  1232   220   11   0  0 0 0  0  0
  ...  reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Diagonals sums are in A052980.
Cf. A028297, A081265, A124182, A131577, A039991 (zero-columns deleted, unsigned and zeros appended).
Cf. A028297 (signed version, zeros deleted). Cf. A034839.

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)

Extensions

Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014

A138229 Expansion of (1-x)/(1-2x+6x^2).

Original entry on oeis.org

1, 1, -4, -14, -4, 76, 176, -104, -1264, -1904, 3776, 18976, 15296, -83264, -258304, -17024, 1515776, 3133696, -2827264, -24456704, -31949824, 82840576, 357380096, 217716736, -1708847104, -4723994624, 805093376
Offset: 0

Author

Paul Barry, Mar 06 2008

Keywords

Comments

Binomial transform of [1, 0, -5, 0, 25, 0, -125, 0, 625, 0, ...]=: powers of -5 with interpolated zeros. - Philippe Deléham, Dec 02 2008

Crossrefs

Cf. A088139.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x+6x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {2,-6},{1,1},30] (* Harvey P. Dale, Feb 29 2012 *)
    TrigExpand@Table[6^(n/2) Cos[n ArcTan[Sqrt[5]]], {n, 0, 20}] (* or *)
    Table[Sum[(-5)^k Binomial[n, 2 k], {k, 0, n/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 20 2016 *)
  • Sage
    [lucas_number2(n,2,6)/2 for n in range(0,28)] # Zerinvary Lajos, Jul 08 2008

Formula

From Philippe Deléham, Nov 14 2008: (Start)
a(n) = 2*a(n-1) - 6*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A098158(n,k)*(-5)^(n-k). (End)
a(n) = Sum_{k=0..n} A124182(n,k)*(-6)^(n-k). - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k+1)/(x*(5*k+6) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = real part of the quaternion (1 + i + 2*j)^n. - Peter Bala, Mar 29 2015

A136523 Triangle T(n,k) = A053120(n,k) + A053120(n-1,k), read by rows.

Original entry on oeis.org

1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512
Offset: 0

Author

Roger L. Bagula, Mar 23 2008

Keywords

Examples

			Triangle begins as:
   1;
   1,  1;
  -1,  1,   2;
  -1, -3,   2,    4;
   1, -3,  -8,    4,    8;
   1,  5,  -8,  -20,    8,   16;
  -1,  5,  18,  -20,  -48,   16,   32;
  -1, -7,  18,   56,  -48, -112,   32,   64;
   1, -7, -32,   56,  160, -112, -256,   64,   128;
   1,  9, -32, -120,  160,  432, -256, -576,   128, 256;
  -1,  9,  50, -120, -400,  432, 1120, -576, -1280, 256, 512;
		

Programs

  • Magma
    function A053120(n,k)
      if ((n+k) mod 2) eq 1 then return 0;
      elif n eq 0 then return 1;
      else return (-1)^Floor((n-k)/2)*(n/(n+k))*Binomial(Floor((n+k)/2), k)*2^k;
      end if;
    end function;
    A136523:= func< n,k | A053120(n,k) + A053120(n-1,k) >;
    [A136523(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 26 2023
    
  • Mathematica
    A053120[n_, k_]:= Coefficient[ChebyshevT[n,x], x, k];
    T[n_, k_]:= T[n, k]= A053120[n,k] + A053120[n-1,k];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A053120(n,k):
        if (n+k)%2==1: return 0
        elif n==0: return 1
        else: return floor((-1)^((n-k)//2)*(n/(n+k))*binomial((n+k)//2, k)*2^k)
    def A136523(n,k): return A053120(n,k) + A053120(n-1,k)
    flatten([[A136523(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 26 2023

Formula

T(n, k) = A053120(n,k) + A053120(n-1,k).
Sum_{k=0..n} T(n, k) = A040000(n).
From G. C. Greubel, Jul 26 2023: (Start)
T(n, 0) = A057077(n).
T(n, 1) = (-1)^floor((n-1)/2) * A109613(n-1).
T(n, 2) = (-1)^floor((n-2)/2) * A008794(n-1).
T(n, 3) = (-1)^floor((n+1)/2) * A000330(n-1).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n-1).
T(n, n-2) = -A001792(n-2).
T(n, n-4) = A001793(n-3).
T(n, n-6) = -A001794(n-6).
Sum_{k=0..n} (-1)^k*T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n) + [n=1].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A025192(floor(n/2)). (End)

Extensions

Edited by G. C. Greubel, Jul 26 2023
Showing 1-10 of 10 results.