cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A221179 A convolution triangle of numbers obtained from A146559.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, -2, 1, 3, 1, 0, -4, -4, 3, 4, 1, 0, -4, -12, -5, 6, 5, 1, 0, 0, -16, -24, -4, 10, 6, 1, 0, 8, -4, -42, -39, 0, 15, 7, 1, 0, 16, 32, -24, -88, -55, 8, 21, 8, 1, 0, 16, 80, 72, -80
Offset: 0

Views

Author

Philippe Deléham, Feb 20 2013

Keywords

Comments

Triangle T(n,k) given by (0, 1, -1, 2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
1
0, 1
0, 1, 1
0, 0, 2, 1
0, -2, 1, 3, 1
0, -4, -4, 3, 4, 1
0, -4, -12, -5, 6, 5, 1
0, 0, -16, -24, -4, 10, 6, 1
		

Crossrefs

Formula

G.f. for the k-th column: ((x-x^2)/(1-2*x+2*x^2))^k.
G.f.: (1-2*x+2*x^2)/(1-2*x+2*x^2-x*y+x^2*y).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
T(n,k) = (-1)^(n-k)*A181472(n-1,k-1) for n>0 and k>0.
T(n,1) = A146559(n-1).
T(n+1,n) = n = A001477(n).
T(n+2,n) = (n^2-n)/2 = A161680(n).
Sum_{k, 0<=k<=n} T(n,k) = A057682(n) for n>0.

A056594 Period 4: repeat [1,0,-1,0]; expansion of 1/(1 + x^2).

Original entry on oeis.org

1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

G.f. is inverse of cyclotomic(4,x). Unsigned: A000035(n+1).
Real part of i^n and imaginary part of i^(n+1), i=sqrt(-1). - Reinhard Zumkeller, Jul 22 2007
The BINOMIAL transform generates A009116(n); the inverse BINOMIAL transform generates (-1)^n*A009116(n). - R. J. Mathar, Apr 07 2008
a(n-1), n >= 1, is the nontrivial Dirichlet character modulo 4, called Chi_2(4;n) (the trivial one is Chi_1(4;n) given by periodic(1,0) = A000035(n)). See the Apostol reference, p. 139, the k = 4, phi(k) = 2 table. - Wolfdieter Lang, Jun 21 2011
a(n-1), n >= 1, is the character of the Dirichlet beta function. - Daniel Forgues, Sep 15 2012
a(n-1), n >= 1, is also the (strongly) multiplicative function h(n) of Theorem 5.12, p. 150, of the Niven-Zuckerman reference. See the formula section. This function h(n) can be employed to count the integer solutions to n = x^2 + y^2. See A002654 for a comment with the formula. - Wolfdieter Lang, Apr 19 2013
This sequence is duplicated in A101455 but with offset 1. - Gary Detlefs, Oct 04 2013
For n >= 2 this gives the determinant of the bipartite graph with 2*n nodes and the adjacency matrix A(n) with elements A(n;1,2) = 1 = A(n;n,n-1), and for 1 < i < n A(n;i,i+1) = 1 = A(n;i,i-1), otherwise 0. - Wolfdieter Lang, Jun 25 2023

Examples

			With a(n-1) = h(n) of Niven-Zuckerman: a(62) = h(63) = h(3^2*7^1) = (-1)^(2*1)*(-1)^(1*3) = -1 = h(3)^2*h(7) = a(2)^2*a(6) = (-1)^2*(-1) = -1. - _Wolfdieter Lang_, Apr 19 2013
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986.
  • I. S. Gradstein and I. M. Ryshik, Tables of series, products, and integrals, Volume 1, Verlag Harri Deutsch, 1981.
  • Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, New York: John Wiley (1980), p. 150.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:1 at page 300.

Crossrefs

Cf. A049310, A074661, A131852, A002654, A146559 (binomial transform).

Programs

  • Magma
    &cat[ [1, 0, -1, 0]: n in [0..23] ]; // Bruno Berselli, Feb 08 2011
    
  • Maple
    A056594 := n->(1-irem(n,2))*(-1)^iquo(n,2); # Peter Luschny, Jul 27 2011
  • Mathematica
    CoefficientList[Series[1/(1 + x^2), {x, 0, 50}], x]
    a[n_]:= KroneckerSymbol[-4,n+1];Table[a[n],{n,0,93}] (* Thanks to Jean-François Alcover. - Wolfdieter Lang, May 31 2013 *)
    CoefficientList[Series[1/Cyclotomic[4, x], {x, 0, 100}], x] (* Vincenzo Librandi, Apr 03 2014 *)
  • Maxima
    A056594(n) := block(
            [1,0,-1,0][1+mod(n,4)]
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    {a(n) = real( I^n )}
    
  • PARI
    {a(n) = kronecker(-4, n+1) }
    
  • Python
    def A056594(n): return (1,0,-1,0)[n&3] # Chai Wah Wu, Sep 23 2023

Formula

G.f.: 1/(1+x^2).
E.g.f.: cos(x).
a(n) = (1/2)*((-i)^n + i^n), where i = sqrt(-1). - Mitch Harris, Apr 19 2005
a(n) = (1/2)*((-1)^(n+floor(n/2)) + (-1)^floor(n/2)).
Recurrence: a(n)=a(n-4), a(0)=1, a(1)=0, a(2)=-1, a(3)=0.
a(n) = T(n, 0) = A053120(n, 0); T(n, x) Chebyshev polynomials of the first kind. - Wolfdieter Lang, Aug 21 2009
a(n) = S(n, 0) = A049310(n, 0); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind.
Sum_{k>=0} a(k)/(k+1) = Pi/4. - Jaume Oliver Lafont, Mar 30 2010
a(n) = Sum_{k=0..n} A101950(n,k)*(-1)^k. - Philippe Deléham, Feb 10 2012
a(n) = (1/2)*(1 + (-1)^n)*(-1)^(n/2). - Bruno Berselli, Mar 13 2012
a(0) = 1, a(n-1) = 0 if n is even, a(n-1) = Product_{j=1..m} (-1)^(e_j*(p_j-1)/2) if the odd n-1 = p_1^(e_1)*p_2^(e_2)*...*p_m^(e_m) with distinct odd primes p_j, j=1..m. See the function h(n) of Theorem 5.12 of the Niven-Zuckerman reference. - Wolfdieter Lang, Apr 19 2013
a(n) = (-4/(n+1)), n >= 0, where (k/n) is the Kronecker symbol. See the Eric Weisstein and Wikipedia links. Thanks to Wesley Ivan Hurt. - Wolfdieter Lang, May 31 2013
a(n) = R(n,0)/2 with the row polynomials R of A127672. This follows from the product of the zeros of R, and the formula Product_{k=0..n-1} 2*cos((2*k+1)*Pi/(2*n)) = (1 + (-1)^n)*(-1)^(n/2), n >= 1 (see the Gradstein and Ryshik reference, p. 63, 1.396 4., with x = sqrt(-1)). - Wolfdieter Lang, Oct 21 2013
a(n) = Sum_{k=0..n} i^(k*(k+1)), where i=sqrt(-1). - Bruno Berselli, Mar 11 2015
Dirichlet g.f. of a(n) shifted right: L(chi_2(4),s) = beta(s) = (1-2^(-s))*(d.g.f. of A034947), see comments by Lang and Forgues. - Ralf Stephan, Mar 27 2015
a(n) = cos(n*Pi/2). - Ridouane Oudra, Sep 29 2024

A098158 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 2*k).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 1, 6, 1, 0, 0, 0, 5, 10, 1, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0, 0, 1, 66, 495, 924
Offset: 0

Views

Author

Paul Barry, Aug 29 2004

Keywords

Comments

Row sums are A011782. Inverse is A065547.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jul 29 2006
Sum of entries in column k is A001519(k+1) (the odd-indexed Fibonacci numbers). - Philippe Deléham, Dec 02 2008
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k left-to-right minima. A left-to-right minimum in a permutation a(1)a(2)...a(n) is position i such that a(j) > a(i) for all j < i. - Tian Han, Nov 16 2023

Examples

			Rows begin
  1;
  0, 1;
  0, 1, 1;
  0, 0, 3, 1;
  0, 0, 1, 6, 1;
		

Crossrefs

Cf. A119900. - Philippe Deléham, Dec 02 2008

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 2*(n-k)) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(n, 2*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Table[Binomial[n, 2*(n-k)], {n,0,12}, {k,0,n}]//Flatten (* Michael De Vlieger, Oct 12 2016 *)
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/((1-x*y)^2-x^2*y)+x*O(x^n), n, x) + y*O(y^k),k,y)} (Hanna)
    
  • PARI
    T(n,k) = binomial(n, 2*(n-k));
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(n, 2*(n-k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n,k) = binomial(n,2*(n-k)).
From Tom Copeland, Oct 10 2016: (Start)
E.g.f.: exp(t*x) * cosh(t*sqrt(x)).
O.g.f.: (1/2) * ( 1 / (1 - (1 + sqrt(1/x))*x*t) + 1 / (1 - (1 - sqrt(1/x))*x*t) ).
Row polynomial: x^n * ((1 + sqrt(1/x))^n + (1 - sqrt(1/x))^n) / 2. (End)
Column k is generated by the polynomial Sum_{j=0..floor(k/2)} C(k, 2j) * x^(k-j). - Paul Barry, Jan 22 2005
G.f.: (1-x*y)/((1-x*y)^2 - x^2*y). - Paul D. Hanna, Feb 25 2005
Sum_{k=0..n} x^k*T(n,k)= A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 04 2006, Oct 15 2008, Oct 19 2008
T(n,k) = T(n-1,k-1) + Sum_{i=0..k-1} T(n-2-i,k-1-i); T(0,0)=1; T(n,k)=0 if n < 0 or k < 0 or n < k. E.g.: T(8,5) = T(7,4) + T(6,4) + T(5,3) + T(4,2) + T(3,1) + T(2,0) = 7+15+5+1+0+0 = 28. - Philippe Deléham, Dec 04 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively. - Philippe Deléham, Dec 24 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Nov 14 2008
T(n,k) = A085478(k,n-k). - Philippe Deléham, Dec 02 2008
T(n,k) = 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 15 2012

A101455 a(n) = 0 for even n, a(n) = (-1)^((n-1)/2) for odd n. Periodic sequence 1,0,-1,0,...

Original entry on oeis.org

0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
Offset: 0

Views

Author

Gerald McGarvey, Jan 20 2005

Keywords

Comments

Called X(n) (i.e., Chi(n)) in Hardy and Wright (p. 241), who show that X(n*m) = X(n)*X(m) for all n and m (i.e., X(n) is completely multiplicative) since (n*m - 1)/2 - (n - 1)/2 - (m - 1)/2 = (n - 1)*(m - 1)/2 == 0 (mod 2) when n and m are odd.
Same as A056594 but with offset 1.
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the non-principal Dirichlet character mod 4. (The principal character is A000035.)
Associated Dirichlet L-functions are for example L(1,chi) = Sum_{n>=1} a(n)/n = A003881, or L(2,chi) = Sum_{n>=1} a(n)/n^2 = A006752, or L(3,chi) = Sum_{n>=1} a(n)/n^3 = A153071. (End)
a(n) is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 0, y = -1, z is arbitrary. - Michael Somos, Nov 27 2019

Examples

			G.f. = x - x^3 + x^5 - x^7 + x^9 - x^11 + x^13 - x^15 + x^17 - x^19 + x^21 + ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=4, Chi_2(n).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1979, p. 241.

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), this sequence (d=-4), A102283 (d=-3), A080891 (d=5), A091337 (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • GAP
    a := [1, 0];; for n in [3..10^2] do a[n] := a[n-2]; od; a; # Muniru A Asiru, Feb 02 2018
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x/(1+x^2))); // G. C. Greubel, Aug 23 2018
    
  • Maple
    a := n -> `if`(n mod 2=0, 0, (-1)^((n-1)/2)):
    seq(a(n), n=1..10^3); # Muniru A Asiru, Feb 02 2018
  • Mathematica
    a[ n_] := {1, 0, -1, 0}[[ Mod[ n, 4, 1]]]; (* Michael Somos, Jan 13 2014 *)
    LinearRecurrence[{0, -1}, {1, 0}, 75] (* G. C. Greubel, Aug 23 2018 *)
  • PARI
    {a(n) = if( n%2, (-1)^(n\2))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = kronecker( -4, n)}; /* Michael Somos, Mar 30 2012 */
    
  • Python
    def A101455(n): return (0,1,0,-1)[n&3] # Chai Wah Wu, Jun 21 2024

Formula

Multiplicative with a(2^e) = 0, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris May 17 2005
Euler transform of length 4 sequence [0, -1, 0, 1]. - Michael Somos, Sep 02 2005
G.f.: (x - x^3)/(1 - x^4) = x/(1 + x^2). - Michael Somos, Sep 02 2005
G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = v - u^2 * (1 + 2*v). - Michael Somos, Aug 04 2011
a(n + 4) = a(n), a(n + 2) = a(-n) = -a(n), a(2*n) = 0, a(2*n + 1) = (-1)^n for all n in Z. - Michael Somos, Aug 04 2011
a(n + 1) = A056594(n). - Michael Somos, Jan 13 2014
REVERT transform is A126120. STIRLING transform of A009454. BINOMIAL transform is A146559. BINOMIAL transform of A009116. BIN1 transform is A108520. MOBIUS transform of A002654. EULER transform is A111335. - Michael Somos, Mar 30 2012
Completely multiplicative with a(p) = 2 - (p mod 4). - Werner Schulte, Feb 01 2018
a(n) = (-(n mod 2))^binomial(n, 2). - Peter Luschny, Sep 08 2018
a(n) = sin(n*Pi/2) = Im(i^n) where i is the imaginary unit. - Jianing Song, Sep 09 2018
From Jianing Song, Nov 14 2018: (Start)
a(n) = ((-4)/n) (or more generally, ((-4^i)/n) for i > 0), where (k/n) is the Kronecker symbol.
E.g.f.: sin(x).
Dirichlet g.f. is the Dirichlet beta function.
a(n) = A091337(n)*A188510(n). (End)

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A009545 Expansion of e.g.f. sin(x)*exp(x).

Original entry on oeis.org

0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216, 33554432
Offset: 0

Views

Author

Keywords

Comments

Also first of the two associated sequences a(n) and b(n) built from a(0)=0 and b(0)=1 with the formulas a(n) = a(n-1) + b(n-1) and b(n) = -a(n-1) + b(n-1). The initial terms of the second sequence b(n) are 1, 1, 0, -2, -4, -4, 0, 8, 16, 16, 0, -32, -64, -64, 0, 128, 256, ... The points Mn(a(n)+b(n)*I) of the complex plane are located on the spiral logarithmic rho = 2*(1/2)^(2*theta)/Pi) and on the straight lines drawn from the origin with slopes: infinity, 1/2, 0, -1/2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
A000225: (1, 3, 7, 15, 31, ...) = 2^n - 1 = INVERT transform of A009545 starting (1, 2, 2, 0, -4, -8, ...). (Cf. comments in A144081). - Gary W. Adamson, Sep 10 2008
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012
The variant 0, 1, -2, 2, 0, -4, 8, -8, 0, 16, -32, 32, 0, -64, (with different signs) is the Lucas U(-2,2) sequence. - R. J. Mathar, Jan 08 2013
(1+i)^n = A146559(n) + a(n)*i where i = sqrt(-1). - Philippe Deléham, Feb 13 2013
This is the Lucas U(2,2) sequence. - Raphie Frank, Nov 28 2015
{A146559, A009545} are the difference analogs of {cos(x),sin(x)} (cf. [Shevelev] link). - Vladimir Shevelev, Jun 08 2017

Crossrefs

Cf. A009116. For minor variants of this sequence see A108520, A084102, A099087.
a(2*n) = A056594(n)*2^n, n >= 1, a(2*n+1) = A057077(n)*2^n.
This is the next term in the sequence A015518, A002605, A000129, A000079, A001477.
Cf. A000225, A144081. - Gary W. Adamson, Sep 10 2008
Cf. A146559.

Programs

  • Magma
    I:=[0,1,2,2]; [n le 4 select I[n] else -4*Self(n-4): n in [1..60]]; // Vincenzo Librandi, Nov 29 2015
    
  • Maple
    t1 := sum(n*x^n, n=0..100): F := series(t1/(1+x*t1), x, 100): for i from 0 to 50 do printf(`%d, `, coeff(F, x, i)) od: # Zerinvary Lajos, Mar 22 2009
    G(x):=exp(x)*sin(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..50 ); # Zerinvary Lajos, Apr 05 2009
    A009545 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2)):
    seq(simplify(A009545(n)), n=0..50); # Peter Luschny, Dec 17 2015
  • Mathematica
    nn=104; Range[0,nn-1]! CoefficientList[Series[Sin[x]Exp[x], {x,0,nn}], x] (* T. D. Noe, May 26 2007 *)
    Join[{a=0,b=1},Table[c=2*b-2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    f[n_] := (1 + I)^(n - 2) + (1 - I)^(n - 2); Array[f, 51, 0] (* Robert G. Wilson v, May 30 2011 *)
    LinearRecurrence[{2,-2},{0,1},110] (* Harvey P. Dale, Oct 13 2011 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x)*sin(x))) /* Joerg Arndt, Apr 24 2011 */
    
  • PARI
    x='x+O('x^100); concat(0, Vec(x/(1-2*x+2*x^2))) \\ Altug Alkan, Dec 04 2015
    
  • Python
    def A009545(n): return ((0, 1, 2, 2)[n&3]<<((n>>1)&-2))*(-1 if n&4 else 1) # Chai Wah Wu, Feb 16 2024
  • Sage
    [lucas_number1(n,2,2) for n in range(0, 51)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    def A146559():
        x, y = 0, -1
        while True:
            yield x
            x, y = x - y, x + y
    a = A146559(); [next(a) for i in range(40)]  # Peter Luschny, Jul 11 2013
    

Formula

a(0)=0; a(1)=1; a(2)=2; a(3)=2; a(n) = -4*a(n-4), n>3. - Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Imaginary part of (1+i)^n. - Marc LeBrun
G.f.: x/(1 - 2*x + 2*x^2).
E.g.f.: sin(x)*exp(x).
a(n) = S(n-1, sqrt(2))*(sqrt(2))^(n-1) with S(n, x)= U(n, x/2) Chebyshev's polynomials of the 2nd kind, Cf. A049310, S(-1, x) := 0.
a(n) = ((1+i)^n - (1-i)^n)/(2*i) = 2*a(n-1) - 2*a(n-2) (with a(0)=0 and a(1)=1). - Henry Bottomley, May 10 2001
a(n) = (1+i)^(n-2) + (1-i)^(n-2). - Benoit Cloitre, Oct 28 2002
a(n) = Sum_{k=0..n-1} (-1)^floor(k/2)*binomial(n-1, k). - Benoit Cloitre, Jan 31 2003
a(n) = 2^(n/2)sin(Pi*n/4). - Paul Barry, Sep 17 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)*(-1)^k. - Paul Barry, Sep 20 2003
a(n+1) = Sum_{k=0..n} 2^k*A109466(n,k). - Philippe Deléham, Nov 13 2006
a(n) = 2*((1/2)^(2*theta(n)/Pi))*cos(theta(n)) where theta(4*p+1) = p*Pi + Pi/2, theta(4*p+2) = p*Pi + Pi/4, theta(4*p+3) = p*Pi - Pi/4, theta(4*p+4) = p*Pi - Pi/2, or a(0)=0, a(1)=1, a(2)=2, a(3)=2, and for n>3 a(n)=-4*a(n-4). Same formulas for the second sequence replacing cosines with sines. For example: a(0) = 0, b(0) = 1; a(1) = 0+1 = 1, b(1) = -0+1 = 1; a(2) = 1+1 = 2, b(2) = -1+1 = 0; a(3) = 2+0 = 2, b(3) = -2+0 = -2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 30 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3), n > 3, which implies the sequence is identical to its fourth differences. Binomial transform of 0, 1, 0, -1. - Paul Curtz, Dec 21 2007
Logarithm g.f. arctan(x/(1-x)) = Sum_{n>0} a(n)/n*x^n. - Vladimir Kruchinin, Aug 11 2010
a(n) = A046978(n) * A016116(n). - Paul Curtz, Apr 24 2011
E.g.f.: exp(x) * sin(x) = x + x^2/(G(0)-x); G(k) = 2k + 1 + x - x*(2k+1)/(4k+3+x+x^2*(4k+3)/( (2k+2)*(4k+5) - x^2 - x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
a(n) = Im( (1+i)^n ) where i=sqrt(-1). - Stanislav Sykora, Jun 11 2012
G.f.: x*U(0) where U(k) = 1 + x*(k+3) - x*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: x + x^2*W(0), where W(k) = 1 + 1/(1 - x*(k+1)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 2*x)/( x*(4*k+4 - 2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n) = (A^n - B^n)/(A - B), where A = 1 + i and B = 1 - i; A and B are solutions of x^2 - 2*x + 2 = 0. - Raphie Frank, Nov 28 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], 2) for n >= 2. - Peter Luschny, Dec 17 2015
a(k+m) = a(k)*A146559(m) + a(m)*A146559(k). - Vladimir Shevelev, Jun 08 2017

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
More terms from Larry Reeves (larryr(AT)acm.org), Aug 24 2000
Definition corrected by Joerg Arndt, Apr 24 2011

A030528 Triangle read by rows: a(n,k) = binomial(k,n-k).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 3, 4, 1, 0, 0, 1, 6, 5, 1, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 7, 56, 126, 120, 55, 12, 1
Offset: 1

Views

Author

Keywords

Comments

A convolution triangle of numbers obtained from A019590.
a(n,m) := s1(-1; n,m), a member of a sequence of triangles including s1(0; n,m)= A023531(n,m) (unit matrix) and s1(2; n,m)= A007318(n-1,m-1) (Pascal's triangle).
The signed triangular matrix a(n,m)*(-1)^(n-m) is the inverse matrix of the triangular Catalan convolution matrix A033184(n+1,m+1), n >= m >= 0, with A033184(n,m) := 0 if n
Riordan array (1+x, x(1+x)). The signed triangle is the Riordan array (1-x,x(1-x)), inverse to (c(x),xc(x)) with c(x) g.f. for A000108. - Paul Barry, Feb 02 2005 [with offset 0]
Also, a(n,k)=number of compositions of n into k parts of 1's and 2's. Example: a(6,4)=6 because we have 2211, 2121, 2112, 1221, 1212 and 1122. - Emeric Deutsch, Apr 05 2005 [see MacMahon and Riordan. - Wolfdieter Lang, Jul 27 2023]
Subtriangle of A026729. - Philippe Deléham, Aug 31 2006
a(n,k) is the number of length n-1 binary sequences having no two consecutive 0's with exactly k-1 1's. Example: a(6,4)=6 because we have 01011, 01101, 01110, 10101, 10110, 11010. - Geoffrey Critzer, Jul 22 2013
Mirrored, shifted Fibonacci polynomials of A011973. The polynomials (illustrated below) of this entry have the property that p(n,t) = t * [p(n-1,t) + p(n-2,t)]. The additive properties of Pascal's triangle (A007318) are reflected in those of these polynomials, as can be seen in the Example Section below and also when the o.g.f. G(x,t) below is expanded as the series x*(1+x) + t * [x*(1+x)]^2 + t^2 * [x*(1+x)]^3 + ... . See also A053122 for a relation to Cartan matrices. - Tom Copeland, Nov 04 2014
Rows of this entry appear as columns of an array for an infinitesimal generator presented in the Copeland link. - Tom Copeland, Dec 23 2015
For n >= 2, the n-th row is also the coefficients of the vertex cover polynomial of the (n-1)-path graph P_{n-1}. - Eric W. Weisstein, Apr 10 2017
With an additional initial matrix element a_(0,0) = 1 and column of zeros a_(n,0) = 0 for n > 0, these are antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Cf. A011973. And A169803. - Tom Copeland, Jul 02 2018

Examples

			Triangle starts:
  [ 1]  1
  [ 2]  1   1
  [ 3]  0   2   1
  [ 4]  0   1   3   1
  [ 5]  0   0   3   4   1
  [ 6]  0   0   1   6   5   1
  [ 7]  0   0   0   4  10   6   1
  [ 8]  0   0   0   1  10  15   7   1
  [ 9]  0   0   0   0   5  20  21   8   1
  [10]  0   0   0   0   1  15  35  28   9   1
  [11]  0   0   0   0   0   6  35  56  36  10   1
  [12]  0   0   0   0   0   1  21  70  84  45  11   1
  [13]  0   0   0   0   0   0   7  56 126 120  55  12   1
  ...
From _Tom Copeland_, Nov 04 2014: (Start)
For quick comparison to other polynomials:
  p(1,t) = 1
  p(2,t) = 1 + 1 t
  p(3,t) = 0 + 2 t + 1 t^2
  p(4,t) = 0 + 1 t + 3 t^2 + 1 t^3
  p(5,t) = 0 + 0   + 3 t^2 + 4 t^3 +  1 t^4
  p(6,t) = 0 + 0   + 1 t^2 + 6 t^3 +  5 t^4 +  1 t^5
  p(7,t) = 0 + 0   + 0     + 4 t^3 + 10 t^4 +  6 t^5 + 1 t^6
  p(8,t) = 0 + 0   + 0     + 1 t^3 + 10 t^4 + 15 t^5 + 7 t^6 + 1 t^7
  ...
Reading along columns gives rows for Pascal's triangle. (End)
		

References

  • P. A. MacMahon, Combinatory Analysis, Two volumes (bound as one), Chelsea Publishing Company, New York, 1960, Vol. I, nr. 124, p. 151.
  • John Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, London, 1958. eq. (35), p.124, 11. p. 154.

Crossrefs

Row sums A000045(n+1) (Fibonacci). a(n, 1)= A019590(n) (Fermat's last theorem). Cf. A049403.

Programs

  • Magma
    /* As triangle */ [[Binomial(k, n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Nov 05 2014
  • Maple
    for n from 1 to 12 do seq(binomial(k,n-k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Apr 05 2005
  • Mathematica
    nn=10;CoefficientList[Series[(1+x)/(1-y x - y x^2),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jul 22 2013 *)
    Table[Binomial[k, n - k], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
    CoefficientList[Table[x^(n/2 - 1) Fibonacci[n + 1, Sqrt[x]], {n, 10}],
       x] // Flatten (* Eric W. Weisstein, Apr 10 2017 *)

Formula

a(n, m) = 2*(2*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: (x*(1+x))^m.
As a number triangle with offset 0, this is T(n, k) = Sum_{i=0..n} (-1)^(n+i)*binomial(n, i)*binomial(i+k+1, 2k+1). The antidiagonal sums give the Padovan sequence A000931(n+5). Inverse binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
G.f.: (1 + x)/(1 - y*x - y*x^2). - Geoffrey Critzer, Jul 22 2013 [offset 0] [with offset 1: g.f. of row polynomials in y: x*(1+x)*y/(1 - x*(1+x)*y). - Wolfdieter Lang, Jul 27 2023]
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = x*(1+x) / [1 - t*x*(1+x)] = -P[Cinv(-x),t], where P(x,t)= x / (1 + t*x) and Cinv(x)= x*(1-x) are the compositional inverses in x of Pinv(x,t) = -P(-x,t) = x / (1 - t*x) and C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108.
Therefore, Ginv(x,t) = -C[Pinv(-x,t)] = {-1 + sqrt[1 + 4*x/(1+t*x)]}/2, which is -A124644(-x,t).
This places this array in a family of arrays related by composition of P and C and their inverses and interpolation by t, such as A091867 and A104597, and associated to the Catalan, Motzkin, Fine, and Fibonacci numbers. Cf. A104597 (polynomials shifted in t) A125145, A146559, A057078, A000045, A155020, A125145, A039717, A001792, A057862, A011973, A115139. (End)

Extensions

More terms from Emeric Deutsch, Apr 05 2005

A009116 Expansion of e.g.f. cos(x) / exp(x).

Original entry on oeis.org

1, -1, 0, 2, -4, 4, 0, -8, 16, -16, 0, 32, -64, 64, 0, -128, 256, -256, 0, 512, -1024, 1024, 0, -2048, 4096, -4096, 0, 8192, -16384, 16384, 0, -32768, 65536, -65536, 0, 131072, -262144, 262144, 0, -524288, 1048576, -1048576, 0, 2097152, -4194304
Offset: 0

Author

Keywords

Comments

Apart from signs, generated by 1,1 position of H_2^n = [1,1;-1,1]^n; and a(n) = 2^(n/2)*cos(Pi*n/2). - Paul Barry, Feb 18 2004
Equals binomial transform of "Period 4, repeat [1, 0, -1, 0]". - Gary W. Adamson, Mar 25 2009
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012

Examples

			G.f. = 1 - x + 2*x^3 - 4*x^4 + 4*x^5 - 8*x^7 + 16*x^8 - 16*x^9 + 32*x^11 - 64*x^12 + ...
		

Crossrefs

(With different signs) row sums of triangle A104597.
Also related to A066321 and A271472.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 50); Coefficients(R!(Laplace( Exp(-x)*Cos(x) ))); // G. C. Greubel, Jul 22 2018; Apr 17 2023
    
  • Maple
    A009116 := n->add((-1)^j*binomial(n,2*j),j=0..floor(n/2));
  • Mathematica
    n = 50; (* n = 2 mod 4 *) (CoefficientList[ Series[ Cos[x]/Exp[x], {x, 0, n}], x]* Table[k!, {k,0,n-1}] )[[1 ;; 45]] (* Jean-François Alcover, May 18 2011 *)
    Table[(1/2)*((-1-I)^n + (-1+I)^n), {n,0,50}] (* Jean-François Alcover, Jan 31 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x) / (1 + 2*x + 2*x^2) + x * O(x^n), n))} /* Michael Somos, Nov 17 2002 */
    
  • SageMath
    def A009116(n): return 2^(n/2)*chebyshev_T(n, -1/sqrt(2))
    [A009116(n) for n in range(41)] # G. C. Greubel, Apr 17 2023

Formula

Real part of (-1-i)^n. See A009545 for imaginary part. - Marc LeBrun
a(n) = -2 * (a(n-1) + a(n-2)); a(0)=1, a(1)=-1. - Michael Somos, Nov 17 2002
G.f.: (1 + x) / (1 + 2*x + 2*x^2).
E.g.f.: cos(x) / exp(x).
a(n) = Sum_{k=0..n} (-1)^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n)*(-1)^n = A099087(n) - A099087(n-1). - R. J. Mathar, Nov 18 2007
a(n) = (-1)^n*A146559(n). - Philippe Deléham, Dec 01 2008
From Paul Curtz, Jul 22 2011: (Start)
a(n) = -4*a(n-4).
a(n) = A016116(n) * A075553(n+6). (End)
E.g.f.: cos(x)/exp(x) = 1 - x/(G(0)+1), where G(k) = 4k+1-x+(x^2)*(4k+1)/((2k+1)*(4k+3)-(x^2)+x*(2k+1)*(4k+3)/( 2k+2-x+x*(2k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(k+1)/(x*(k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (-1)^n*2^(n/2)*cos(n*Pi/4). - Nordine Fahssi, Dec 18 2013
a(n) = (-1)^floor((n+1)/2)*2^(n-1)*H(n, n mod 2, 1/2) for n >= 3 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], 2). - Peter Luschny, Sep 03 2019
a(n) = 2^(n/2)*ChebyshevT(n, -1/sqrt(2)). - G. C. Greubel, Apr 17 2023
a(n) = A108520(n-1)+A108520(n). - R. J. Mathar, May 09 2023

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Definition corrected by Joerg Arndt, Apr 29 2011

A064613 Second binomial transform of the Catalan numbers.

Original entry on oeis.org

1, 3, 10, 37, 150, 654, 3012, 14445, 71398, 361114, 1859628, 9716194, 51373180, 274352316, 1477635912, 8016865533, 43773564294, 240356635170, 1326359740956, 7351846397334, 40913414754324, 228508350629892
Offset: 0

Author

Karol A. Penson, Sep 24 2001

Keywords

Comments

Exponential convolution of Catalan numbers and powers of 2. - Vladeta Jovovic, Dec 03 2004
Hankel transform of this sequence gives A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 4 colors. Example: a(3)=37 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 4 paths of shape UHD. - Emeric Deutsch, May 02 2011
a(n) is the number of Schroeder paths of semilength n in which the (2,0)-steps come in 2 colors and having no (2,0)-steps at levels 1,3,5,... - José Luis Ramírez Ramírez, Mar 30 2013
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Möbius) transformations P(x,t)=x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); and an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). (Cf A126930.)
O.g.f.: G(x) = C[P[P(x,-1),-1]] = C[P(x,-2)] = (1-sqrt(1-4*x/(1-2*x)))/2 = x*A064613(x).
Ginv(x) = Pinv[Cinv(x),-2] = P[Cinv(x),2] = x(1-x)/[1+2x(1-x)] = (x-x^2)/[1+2(x-x^2)] = x - 3 x^2 + 8 x^3 - ... is -A155020(-x) ignoring first term there. (Cf. A146559, A125145.)(End)

Crossrefs

Programs

  • Magma
    I:=[3,10]; [1] cat [n le 2 select I[n] else ((8*n-2)*Self(n-1)-(12*n-12)*Self(n-2))div (n+1): n in [1..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    CoefficientList[Series[(1-Sqrt[(1-6*x)/(1-2*x)])/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 29 2013 *)
    a[n_] := 2^n Hypergeometric2F1[1/2, -n, 2, -2];
    Array[a, 22, 0] (* Peter Luschny, Jan 27 2020 *)
  • PARI
    x='x+O('x^66); Vec((1-sqrt((1-6*x)/(1-2*x)))/(2*x)) /* Joerg Arndt, Mar 31 2013 */
    

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k, k)*2^(n-k)/(k+1).
a(n) = 2^n*hypergeom([1/2, -n], [2], -2).
G.f.: (1-sqrt((1-6*x)/(1-2*x)))/(2*x). - Vladeta Jovovic, May 03 2003
With offset 1: a(1) = 1, a(n) = 2^(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence (n+1)*a(n) = (8*n-2)*a(n-1) - (12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004
E.g.f.: exp(4*x)*(BesselI(0, 2*x) - BesselI(1, 2*x)). - Vladeta Jovovic, Dec 03 2004
Inverse binomial transform of A104455. - Philippe Deléham, Nov 30 2007
G.f.: 1/(1-3*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). - Paul Barry, Jul 02 2009
a(n) = Sum_{0<=k<=n} A052179(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix as follows:
3, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
a(n) ~ 2^(n-3/2)*3^(n+3/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jun 29 2013
G.f. A(x) satisfies: A(x) = 1/(1 - 2*x) + x * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020

Extensions

Name clarified using a comment of Vladeta Jovovic by Peter Bala, Jan 27 2020

A028297 Coefficients of Chebyshev polynomials of the first kind: triangle of coefficients in expansion of cos(n*x) in descending powers of cos(x).

Original entry on oeis.org

1, 1, 2, -1, 4, -3, 8, -8, 1, 16, -20, 5, 32, -48, 18, -1, 64, -112, 56, -7, 128, -256, 160, -32, 1, 256, -576, 432, -120, 9, 512, -1280, 1120, -400, 50, -1, 1024, -2816, 2816, -1232, 220, -11, 2048, -6144, 6912, -3584, 840, -72, 1, 4096, -13312, 16640, -9984
Offset: 0

Keywords

Comments

Rows are of lengths 1, 1, 2, 2, 3, 3, ... (A008619).
This triangle is generated from A118800 by shifting down columns to allow for (1, 1, 2, 2, 3, 3, ...) terms in each row. - Gary W. Adamson, Dec 16 2007
Unsigned triangle = A034839 * A007318. - Gary W. Adamson, Nov 28 2008
Triangle, with zeros omitted, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, -1, 1, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 16 2011
From Wolfdieter Lang, Aug 02 2014: (Start)
This irregular triangle is the row reversed version of the Chebyshev T-triangle A053120 given by A039991 with vanishing odd-indexed columns removed.
If zeros are appended in each row n >= 1, in order to obtain a regular triangle (see the Philippe Deléham comment, g.f. and example) this becomes the Riordan triangle (1-x)/(1-2*x), -x^2/(1-2*x). See also the unsigned version A201701 of this regular triangle.
(End)
Apparently, unsigned diagonals of this array are rows of A200139. - Tom Copeland, Oct 11 2014
It appears that the coefficients are generated by the following: Let SM_k = Sum( d_(t_1, t_2)* eM_1^t_1 * eM_2^t_2) summed over all length 2 integer partitions of k, i.e., 1*t_1 + 2*t_2 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 2 data (i.e., SM_k = S_k/2 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(2,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2) form an irregular triangle, with one row for each k value starting with k=1. Thus this procedure and associated OEIS sequences A287768, A288199, A288207, A288211, A288245, A288188 are generalizations of Chebyshev polynomials of the first kind. - Gregory Gerard Wojnar, Jul 01 2017

Examples

			Letting c = cos x, we have: cos 0x = 1, cos 1x = 1c; cos 2x = 2c^2-1; cos 3x = 4c^3-3c, cos 4x = 8c^4-8c^2+1, etc.
T4 = 8x^4 - 8x^2 + 1 = 8, -8, +1 = 2^(3) - (4)(2) + [2^(-1)](4)/2.
From _Wolfdieter Lang_, Aug 02 2014: (Start)
The irregular triangle T(n,k) begins:
n\k     1      2     3      4     5     6   7   8 ....
0:      1
1:      1
2:      2     -1
3:      4     -3
4:      8     -8     1
5:     16    -20     5
6:     32    -48    18     -1
7:     64   -112    56     -7
8:    128   -256   160    -32     1
9:    256   -576   432   -120     9
10:   512  -1280  1120   -400    50    -1
11:  1024  -2816  2816  -1232   220   -11
12:  2048  -6144  6912  -3584   840   -72   1
13:  4096 -13312 16640  -9984  2912  -364  13
14:  8192 -28672 39424 -26880  9408 -1568  98  -1
15: 16384 -61440 92160 -70400 28800 -6048 560 -15
...
T(4,x) = 8*x^4 -8*x^2 + 1*x^0, T(5,x) = 16*x^5 - 20*x^3 + 5*x^1, with Chebyshev's T-polynomials (A053120). (End)
From _Philippe Deléham_, Dec 16 2011: (Start)
The triangle (1,1,0,0,0,0,...) DELTA (0,-1,1,0,0,0,0,...) includes zeros and begins:
   1;
   1,   0;
   2,  -1,  0;
   4,  -3,  0,  0;
   8,  -8,  1,  0, 0;
  16, -20,  5,  0, 0, 0;
  32, -48, 18, -1, 0, 0, 0; (End)
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 5th ed., Section 1.335, p. 35.
  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 106. [From Rick L. Shepherd, Jul 06 2010]

Crossrefs

Cf. A028298.
Reflection of A008310, the main entry. With zeros: A039991.
Cf. A053120 (row reversed table including zeros).
Cf. A001333 (row sums 1), A001333 (alternating row sums). - Wolfdieter Lang, Aug 02 2014

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, expand(2*b(n-1)-x*b(n-2))) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    t[n_] := (Cos[n x] // TrigExpand) /. Sin[x]^m_ /; EvenQ[m] -> (1 - Cos[x]^2)^(m/2) // Expand; Flatten[Table[ r = Reverse @ CoefficientList[t[n], Cos[x]]; If[OddQ[Length[r]], AppendTo[r,0]]; Partition[r,2][[All, 1]],{n, 0, 13}] ][[1 ;; 53]] (* Jean-François Alcover, May 06 2011 *)
    Tpoly[n_] := HypergeometricPFQ[{(1 - n)/2, -n/2}, {1/2}, 1 - x];
    Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)

Formula

cos(n*x) = 2 * cos((n-1)*x) * cos(x) - cos((n-2)*x) (from CRC's Multiple-angle relations). - Rick L. Shepherd, Jul 06 2010
G.f.: (1-x) / (1-2x+y*x^2). - Philippe Deléham, Dec 16 2011
Sum_{k=0..n} T(n,k)*x^k = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x = 0, 1, 2, 3, 4, 5, 6, respectively. - Philippe Deléham, Dec 16 2011
T(n,k) = [x^k] hypergeom([1/2 - n/2, -n/2], [1/2], 1 - x). - Peter Luschny, Feb 03 2021
T(n,k) = (-1)^k * 2^(n-1-2*k) * A034807(n,k). - Hoang Xuan Thanh, Jun 21 2025

Extensions

More terms from David W. Wilson
Row length sequence and link to Abramowitz-Stegun added by Wolfdieter Lang, Aug 02 2014

A125145 a(n) = 3a(n-1) + 3a(n-2). a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 15, 57, 216, 819, 3105, 11772, 44631, 169209, 641520, 2432187, 9221121, 34959924, 132543135, 502509177, 1905156936, 7222998339, 27384465825, 103822392492, 393620574951, 1492328902329, 5657848431840, 21450532002507
Offset: 0

Author

Tanya Khovanova, Jan 11 2007

Keywords

Comments

Number of aa-avoiding words of length n on the alphabet {a,b,c,d}.
Equals row 3 of the array shown in A180165, the INVERT transform of A028859 and the INVERTi transform of A086347. - Gary W. Adamson, Aug 14 2010
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family related by compositions of C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for A000108; its inverse Cinv(x) = x(1-x); and the special Mobius transformation P(x,t) = x / (1+t*x) with inverse P(x,-t) in x. Cf. A091867.
O.g.f.: G(x) = P[P[P[-Cinv(-x),-1],-1],-1] = P[-Cinv(-x),-3] = x*(1+x)/[1-3x(1-x)]= x*A125145(x).
Ginv(x) = -C[-P(x,3)] = [-1 + sqrt(1+4x/(1+3x))]/2 = x*A104455(-x).
G(-x) = -x(1-x) * [ 1 - 3*[x*(1+x)] + 3^2*[x*(1+x)]^2 - ...] , and so this array is related to finite differences in the row sums of A030528 * Diag((-3)^1,3^2,(-3)^3,..). (Cf. A146559.)
The inverse of -G(-x) is C[-P(-x,3)]= [1 - sqrt(1-4x/(1-3x))]/2 = x*A104455(x). (End)
Number of 3-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020

Crossrefs

Cf. A028859 = a(n+2) = 2 a(n+1) + 2 a(n); A086347 = On a 3 X 3 board, number of n-move routes of chess king ending at a given side cell. a(n) = 4a(n-1) + 4a(n-2).
Cf. A128235.
Cf. A180165, A028859, A086347. - Gary W. Adamson, Aug 14 2010

Programs

  • Haskell
    a125145 n = a125145_list !! n
    a125145_list =
       1 : 4 : map (* 3) (zipWith (+) a125145_list (tail a125145_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Magma
    I:=[1,4]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
  • Maple
    a[0]:=1: a[1]:=4: for n from 2 to 27 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n],n=0..27); # Emeric Deutsch, Feb 27 2007
    A125145 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,4]) ;
        else
            3*(procname(n-1)+procname(n-2)) ;
        end if;
    end proc: # R. J. Mathar, Feb 13 2022
  • Mathematica
    nn=23;CoefficientList[Series[(1+x)/(1-3x-3x^2),{x,0,nn}],x] (* Geoffrey Critzer, Feb 09 2014 *)
    LinearRecurrence[{3,3},{1,4},30] (* Harvey P. Dale, May 01 2022 *)

Formula

G.f.: (1+z)/(1-3z-3z^2). - Emeric Deutsch, Feb 27 2007
a(n) = (5*sqrt(21)/42 + 1/2)*(3/2 + sqrt(21)/2)^n + (-5*sqrt(21)/42 + 1/2)*(3/2 - sqrt(21)/2)^n. - Antonio Alberto Olivares, Mar 20 2008
a(n) = A030195(n)+A030195(n+1). - R. J. Mathar, Feb 13 2022
E.g.f.: exp(3*x/2)*(21*cosh(sqrt(21)*x/2) + 5*sqrt(21)*sinh(sqrt(21)*x/2))/21. - Stefano Spezia, Aug 04 2022
a(n) = (((3 + sqrt(21)) / 2)^(n+2) - ((3 - sqrt(21)) / 2)^(n+2)) / (3 * sqrt(21)). - Werner Schulte, Dec 17 2024
Showing 1-10 of 36 results. Next