cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A088137 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The Lucas U(P=2, Q=3) sequence. - R. J. Mathar, Oct 24 2012
Hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 2 - 3/(2 - 3/(2 - 3/(2 - ... - 3/2))) with n 3's. - Greg Dresden, Oct 06 2019
With different signs, 0, 1, -2, 1, 4, -11, 10, 13, -56, 73, 22, -263, 460, ... also the Lucas U(-2,3) sequence. - R. J. Mathar, Jan 08 2013
From Peter Bala, Apr 01 2018: (Start)
The companion Lucas sequence V(n,2,3) is A087455.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = a(n)/A087455(n). Cf. A025172 and A127357. (End)

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
  • Maple
    A[0]:= 0: A[1]:= 1:
    for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:
    seq(A[n],n=0..100); # Robert Israel, Aug 05 2014
  • Mathematica
    LinearRecurrence[{2,-3},{0,1},40] (* Harvey P. Dale, Nov 03 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,3) for n in range(0, 38)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 3^(n/2)*sin(n*atan(sqrt(2)))/sqrt(2).
|3*A087455(n) - A087455(n+1)| = 2*a(n+1) or 3*A087455(n) + A087455(n+1) = 2*a(n+1). - Creighton Dement, Aug 02 2004
G.f.: x/(1 - 2*x + 3*x^2).
E.g.f.: exp(x)*sin(sqrt(2)*x)/sqrt(2).
a(n) = 2*a(n-1) - 3*a(n-2) for n > 1, a(0)=0, a(1)=1.
a(n) = ((1 + i*sqrt(2))^n - (1 - i*sqrt(2))^n)/(2*i*sqrt(2)), where i=sqrt(-1).
a(n) = Im((1 + i*sqrt(2))^n/sqrt(2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)(-2)^k.
3^(n+1) = 9*(A087455(n))^2 + 2*(A087455(n+1))^2 - 2*(a(n+2))^2; 3^n = a(n+1)^2 + 3*a(n)^2 - 2*a(n+1)*a(n) for n > 0 - Creighton Dement, Jan 20 2005
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 3*x)/( x*(4*k+4 - 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n+1) = Sum_{k=0..n} A123562(n,k). - Philippe Deléham, Nov 23 2013
a(n) = n*hypergeom([(1-n)/2,(2-n)/2],[3/2],-2). - Gerry Martens, Sep 03 2023

A087455 Expansion of (1 - x)/(1 - 2*x + 3*x^2) in powers of x.

Original entry on oeis.org

1, 1, -1, -5, -7, 1, 23, 43, 17, -95, -241, -197, 329, 1249, 1511, -725, -5983, -9791, -1633, 26107, 57113, 35905, -99529, -306773, -314959, 290401, 1525679, 2180155, -216727, -6973919, -13297657, -5673557, 28545857, 74112385, 62587199, -97162757, -382087111, -472685951
Offset: 0

Views

Author

Simone Severini, Oct 23 2003

Keywords

Comments

Type 2 generalized Gaussian Fibonacci integers.
Binomial transform of A077966. - Philippe Deléham, Dec 02 2008
The real component of Q^n, where Q is the quaternion 1 + 0*i + 1*j + 1*k. - Stanislav Sykora, Jun 11 2012
If entries are multiplied by 2*(-1)^n, which gives 2, -2, -2, 10, -14, -2, 46, -86, 34, 190, -482, 394, ..., we obtain the Lucas V(-2,3) sequence. - R. J. Mathar, Jan 08 2013
The real component of (1 + sqrt(-2))^n. - Giovanni Resta, Apr 01 2014
It is an open question whether or not this sequence satisfies Benford's law [Berger-Hill, 2017; Arno Berger, email, Jan 06 2017]. - N. J. A. Sloane, Feb 08 2017
Given an alternated cubic honeycomb with a planar dissection along a plane from edge to opposite edge of the containing cube. The sequence (1 + sqrt(-2))^n contains a real component representing distance along the edge of the tetrahedron/octahedron and an imaginary component representing the orthogonal distance along the sqrt(2) axis in a tetrahedron/octahedron, this generates a unique cevian (line from the apical vertex to a vertex on the triangular tiling composing the opposite face) in this plane with length (sqrt(3))^n. - Jason Pruski, Sep 04 2017, Jan 08 2018
From Peter Bala, Apr 01 2018: (Start)
This sequence is the Lucas sequence V(n,2,3). The companion Lucas sequence U(n,2,3) is A088137.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = A088137(n)/a(n). Cf. A025172 and A127357. (End)

Examples

			G.f. = 1 + x - x^2 - 5*x^3 - 7*x^4 + x^5 + 23*x6 + 43*x^7 + 17*x^8 - 95*x^9 + ...
		

References

  • Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
  • S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else 2*Self(n-1) -3*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 03 2024
    
  • Maple
    Digits:=100; a:=n->round(abs(evalf((3^(n/2))*cos(n*arctan(sqrt(2))))));
    # alternative:
    a:= gfun:-rectoproc({a(n) = 2*a(n-1) - 3*a(n-2),a(0)=1,a(1)=1},a(n),remember):
    map(a, [$0..100]); # Robert Israel, Jun 23 2015
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+3*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Apr 01 2014 *)
    a[ n_] := ChebyshevT[ n, 1/Sqrt[3]] Sqrt[3]^n // Simplify; (* Michael Somos, May 15 2015 *)
    LinearRecurrence[{2,-3},{1,1},50] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    {a(n) = real( (1 + quadgen(-8))^n )}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    {a(n) = real( subst( poltchebi(n), 'x, quadgen(12) / 3) * quadgen(12)^n)}; /* Michael Somos, Jul 26 2006 */
    
  • PARI
    a(n)=simplify(polchebyshev(n,,quadgen(12)/3)*quadgen(12)^n) \\ Charles R Greathouse IV, Jun 26 2013
    
  • SageMath
    [sqrt(3)^n*chebyshev_T(n, 1/sqrt(3)) for n in range(41)] # G. C. Greubel, Jan 03 2024

Formula

a(n) = (3^(n/2))*cos(n*arctan(sqrt(2))). - Paul Barry, Oct 23 2003
From Paul Barry, Sep 03 2004: (Start)
a(n) = 2*a(n-1) - 3*a(n-2).
a(n) = (-1)^n*Sum_{m=0..n} binomial(n, m)*Sum_{k=0..n} binomial(m, 2k)2^(m-k).
Binomial transform of 1/(1 + 2*x^2), or (1, 0, -2, 0, 4, 0, -8, 0, 16, ...). (End)
a(n+1) = a(n+2) - 2*A088137(n+1), a(n+1) = A088137(n+2) - A088137(n+1). - Creighton Dement, Oct 28 2004
a(n) = upper left and lower right terms of [1,-2, 1,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-2)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-3)^(n-k). - Philippe Deléham, Nov 15 2008
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = a(-n) * 3^n for all n in Z. - Michael Somos, Aug 25 2014
E.g.f.: (1/2)*(exp((1 - i*sqrt(2))*x) + exp((1 + i*sqrt(2))*x)), where i is the imaginary unit. - Stefano Spezia, Jul 17 2019

Extensions

The explicit formula was given by Paul Barry.
Corrected and extended by N. J. A. Sloane, Aug 01 2004
More terms from Creighton Dement, Jul 31 2004

A127357 Expansion of 1/(1 - 2*x + 9*x^2).

Original entry on oeis.org

1, 2, -5, -28, -11, 230, 559, -952, -6935, -5302, 51811, 151340, -163619, -1689298, -1906025, 11391632, 39937489, -22649710, -404736821, -605626252, 2431378885, 10313394038, -1255621889
Offset: 0

Views

Author

Paul Barry, Jan 11 2007

Keywords

Comments

Hankel transform of A100193. A member of the family of sequences with g.f. 1/(1-2*x+r^2*x^2) which are the Hankel transforms of the sequences given by Sum_{k=0..n} binomial(2*n,k)*r^(n-k).
From Peter Bala, Apr 01 2018: (Start)
With offset 1, this is the Lucas sequence U(n,2,9). The companion Lucas sequence V(n,2,9) is 2*A025172(n).
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 2 o 2 o ... o 2 (n terms) = 2*A127357(n-1)/A025172(n). Cf. A088137 and A087455. (End)

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=2*a[n-1]-9*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    m:=23; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-2*x+9*x^2))); // Bruno Berselli, Jul 01 2011
    
  • Magma
    [3^n*Evaluate(ChebyshevU(n+1),1/3): n in [0..50]]; // G. C. Greubel, Jan 02 2024
    
  • Maple
    c := 2*sqrt(2): g := exp(x)*(sin(c*x)+c*cos(c*x))/c: ser := series(g,x,32):
    seq(n!*coeff(ser,x,n), n=0..22); # Peter Luschny, Oct 19 2016
  • Mathematica
    RootReduce@Table[3^n (Cos[n ArcTan[2 Sqrt[2]]] + Sin[n ArcTan[2 Sqrt[2]]] Sqrt[2]/4), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
    CoefficientList[Series[1/(1-2x+9x^2),{x,0,40}],x] (* or *)
    LinearRecurrence[ {2,-9},{1,2},40] (* Harvey P. Dale, Mar 15 2022 *)
    Table[3^n*ChebyshevU[n, 1/3], {n,0,40}] (* G. C. Greubel, Jan 02 2024 *)
  • Maxima
    makelist(coeff(taylor(1/(1-2*x+9*x^2), x, 0, n), x, n), n, 0, 22); /* Bruno Berselli, Jul 01 2011 */
    
  • PARI
    Vec(1/(1-2*x+9*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    [lucas_number1(n,2,9) for n in range(1, 24)] # Zerinvary Lajos, Apr 23 2009
    
  • SageMath
    [3^n*chebyshev_U(n,1/3) for n in range(41)] # G. C. Greubel, Jan 02 2024
    

Formula

a(n) = Sum_{k=0..n} binomial(n-k,k)*2^(n-2*k)*(-9)^k.
a(n) = 2*a(n-1) - 9*a(n-2) for n >= 2. - Vincenzo Librandi, Mar 22 2011
a(n) = ((1-2*sqrt(2)*i)^n-(1+2*sqrt(2)*i)^n)*i/(4*sqrt(2)), where i=sqrt(-1). - Bruno Berselli, Jul 01 2011
From Vladimir Reshetnikov, Oct 15 2016: (Start)
a(n) = 3^n*(cos(n*theta) + sin(n*theta)*sqrt(2)/4), theta = arctan(2*sqrt(2)).
E.g.f.: exp(x)*(cos(2*sqrt(2)*x) + sin(2*sqrt(2)*x)*sqrt(2)/4). (End)
a(n) = 2^n*Product_{k=1..n}(1 + 3*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
From G. C. Greubel, Jan 02 2024: (Start)
a(n) = (-1)^n * A025170(n).
a(n) = 3^n * ChebyshevU(n, 1/3). (End)

A051944 a(n) = C(n)*(4*n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 5, 18, 65, 238, 882, 3300, 12441, 47190, 179894, 688636, 2645370, 10192588, 39373700, 152443080, 591385545, 2298248550, 8945490510, 34867625100, 136079265630, 531693754020, 2079632696700, 8141948163960, 31904544069450, 125120702290428, 491056586546652
Offset: 0

Views

Author

Barry E. Williams, Dec 20 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=4 of A330965.

Programs

  • Magma
    [Catalan(n)*(4*n+1):n in [0..30] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (3 - 4*x - 3*Sqrt(1 - 4*x))/(2*x*Sqrt(1 - 4*x)))) ); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](4n+1),{n,0,30}] (* Harvey P. Dale, Feb 21 2022 *)
  • PARI
    {a(n)=if(n<0, 0, (4*n+1)*binomial(2*n,n)/(n+1))} /* Michael Somos, Sep 17 2006 */
    

Formula

The Hankel determinant transform is A025172(n-1). - Michael Somos, Sep 17 2006
-(n+1)*(4*n-3)*a(n) + 2*(4*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 19 2014
G.f.: (3 - 4*x - 3*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 3*binomial(2*n, n-1) = A000984(n) + 3*A001791(n).
a(n) ~ 4^(n+1)/sqrt(Pi*n). (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2020

A106632 Expansion of g.f. -(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2)).

Original entry on oeis.org

-1, 1, -25, 49, -1, 529, -1849, 289, -9025, 58081, -38809, 108241, -1560001, 2283121, -525625, 35796289, -95863681, 2666689, -681575449, 3261894769, -1289169025, 9906021841, -94109673529, 99199171681, -84332740801, 2327696411041, -4753075824025, 46970592529, -48635546218561
Offset: 0

Views

Author

Creighton Dement, May 11 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 1tesseq[A*B] with A = + .5'i - .5'k + .5i' - .5k' - 3'jj' - .5'ij' - .5'ji' - .5'jk' - .5'kj' and B = + .5'i + .5'j + .5i' + .5j' + .5'kk' + .5'ij' + .5'ji' + .5e

References

  • S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).

Crossrefs

Programs

  • GAP
    a:=[-1,1,-25];; for n in [4..40] do a[n]:=-a[n-1]-3*a[n-2] - 27*a[n-3]; od; a; # G. C. Greubel, Feb 19 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( -(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2)) )); // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    CoefficientList[Series[-(1+27x^2)/((1+3x)(1-2x+9x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{-1,-3,-27},{-1,1,-25},40] (* Harvey P. Dale, Oct 03 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec(-(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2))) \\ G. C. Greubel, Feb 19 2019
    
  • SageMath
    (-(1+27*x^2)/((1+3*x)*(1-2*x+9*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
    

Formula

a(n) = (3^(n+1)/2)*(cos((n+1)*arccos(1/3)) + (-1)^(n+1) ).
a(n) = - a(n-1) - 3*a(n-2) - 27*a(n-3), a(0) = -1, a(1) = 1, a(2) = -25.
a(n) = 1/4( p^(n+1) + q^(n+1) ) + (-3)^(n+1)/2 with p = 1 + 2*sqrt(2)i and q = 1 - 2*sqrt(2)i ( i^2 = -1 ).
a(n) = ((-1)^(n+1))*(A087455(n+1))^2; 2*a(n) = A025172(n) + (-3)^(n+1).

Extensions

Edited by Ralf Stephan, Apr 09 2009
Definition corrected by Harvey P. Dale, Oct 03 2014

A221131 Table, T, read by antidiagonals where T(-j,k) = ((1+sqrt(j))^k + (1-sqrt(j))^k)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -4, 1, 1, 1, -3, -8, -7, -4, 1, 1, 1, -4, -11, -8, 1, 0, 1, 1, 1, -5, -14, -7, 16, 23, 8, 1, 1, 1, -6, -17, -4, 41, 64, 43, 16, 1, 1, 1, -7, -20, 1, 76, 117, 64, 17, 16, 1, 1, 1, -8, -23, 8, 121, 176, 29, -128, -95, 0, 1
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com) and Robert G. Wilson v, Jan 02 2013

Keywords

Comments

.j\k.........0..1...2....3...4....5....6......7.......8......9......10
.0: A000012..1..1...1....1...1....1....1......1.......1......1.......1
-1: A146559..1..1...0...-2..-4...-4....0......8......16.....16.......0
-2: A087455..1..1..-1...-5..-7....1...23.....43......17....-95....-241
-3: A138230..1..1..-2...-8..-8...16...64.....64....-128...-512....-512
-4: A006495..1..1..-3..-11..-7...41..117.....29....-527..-1199.....237
-5: A138229..1..1..-4..-14..-4...76..176...-104...-1264..-1904....3776
-6: A090592..1..1..-5..-17...1..121..235...-377...-2399..-2159...12475
-7: A090590..1..1..-6..-20...8..176..288...-832...-3968..-1280...29184
-8: A025172..1..1..-7..-23..17..241..329..-1511...-5983...1633...57113
-9: A120743..1..1..-8..-26..28..316..352..-2456...-8432...7696...99712
-10: ........1..1..-9..-29..41..401..351..-3709..-11279..18241..160551

Crossrefs

Programs

  • Mathematica
    T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; Table[ T[ -j + k, k], {j, 0, 11}, {k, 0, j}] // Flatten
Showing 1-6 of 6 results.