A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A088137
Generalized Gaussian Fibonacci integers.
Original entry on oeis.org
0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Mihai Prunescu, On other two representations of the C-recursive integer sequences by terms in modular arithmetic, arXiv:2406.06436 [math.NT], 2024. See p. 18.
- Mihai Prunescu and Lorenzo Sauras-Altuzarra, On the representation of C-recursive integer sequences by arithmetic terms, arXiv:2405.04083 [math.LO], 2024. See p. 16.
- Mihai Prunescu and Joseph M. Shunia, On modular representations of C-recursive integer sequences, arXiv:2502.16928 [math.NT], 2025. See p. 6.
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (2,-3).
- Index entries for Lucas sequences
-
[n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
-
A[0]:= 0: A[1]:= 1:
for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:
seq(A[n],n=0..100); # Robert Israel, Aug 05 2014
-
LinearRecurrence[{2,-3},{0,1},40] (* Harvey P. Dale, Nov 03 2014 *)
-
x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018
-
[lucas_number1(n,2,3) for n in range(0, 38)] # Zerinvary Lajos, Apr 23 2009
A087455
Expansion of (1 - x)/(1 - 2*x + 3*x^2) in powers of x.
Original entry on oeis.org
1, 1, -1, -5, -7, 1, 23, 43, 17, -95, -241, -197, 329, 1249, 1511, -725, -5983, -9791, -1633, 26107, 57113, 35905, -99529, -306773, -314959, 290401, 1525679, 2180155, -216727, -6973919, -13297657, -5673557, 28545857, 74112385, 62587199, -97162757, -382087111, -472685951
Offset: 0
G.f. = 1 + x - x^2 - 5*x^3 - 7*x^4 + x^5 + 23*x6 + 43*x^7 + 17*x^8 - 95*x^9 + ...
- Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.
- S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).
- Robert Israel, Table of n, a(n) for n = 0..3500
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.
- M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (2,-3).
- Index entries for sequences related to Benford's law
-
[n le 2 select 1 else 2*Self(n-1) -3*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 03 2024
-
Digits:=100; a:=n->round(abs(evalf((3^(n/2))*cos(n*arctan(sqrt(2))))));
# alternative:
a:= gfun:-rectoproc({a(n) = 2*a(n-1) - 3*a(n-2),a(0)=1,a(1)=1},a(n),remember):
map(a, [$0..100]); # Robert Israel, Jun 23 2015
-
CoefficientList[Series[(1-x)/(1-2*x+3*x^2), {x, 0, 40}], x] (* Vaclav Kotesovec, Apr 01 2014 *)
a[ n_] := ChebyshevT[ n, 1/Sqrt[3]] Sqrt[3]^n // Simplify; (* Michael Somos, May 15 2015 *)
LinearRecurrence[{2,-3},{1,1},50] (* Harvey P. Dale, Jul 30 2019 *)
-
{a(n) = real( (1 + quadgen(-8))^n )}; /* Michael Somos, Jul 26 2006 */
-
{a(n) = real( subst( poltchebi(n), 'x, quadgen(12) / 3) * quadgen(12)^n)}; /* Michael Somos, Jul 26 2006 */
-
a(n)=simplify(polchebyshev(n,,quadgen(12)/3)*quadgen(12)^n) \\ Charles R Greathouse IV, Jun 26 2013
-
[sqrt(3)^n*chebyshev_T(n, 1/sqrt(3)) for n in range(41)] # G. C. Greubel, Jan 03 2024
A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A025172
Let phi = arccos(1/3), the dihedral angle of the regular tetrahedron. Then cos(n*phi) = a(n)/3^n.
Original entry on oeis.org
1, 1, -7, -23, 17, 241, 329, -1511, -5983, 1633, 57113, 99529, -314959, -1525679, -216727, 13297657, 28545857, -62587199, -382087111, -200889431, 3037005137, 7882015153, -11569015927, -94076168231, -84031193119, 678623127841, 2113526993753
Offset: 0
-
f:=proc(n) option remember; if n <= 1 then RETURN(1); fi; 2*f(n-1)-9*f(n-2); end;
-
Table[ n/2 3^n GegenbauerC[ n, 1/3 ], {n, 24} ]
CoefficientList[Series[(1 - x)/(1 - 2 x + 9 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2013 *)
LinearRecurrence[{2,-9},{1,1},30] (* Harvey P. Dale, Jan 30 2016 *)
-
{a(n)= if(n<0, 0, 3^(n-1)* subst(3* poltchebi(abs(n)), x, 1/3))} /* Michael Somos, Mar 14 2007 */
Edited by
N. J. A. Sloane, Feb 22 2007. Among other things, I changed the offset and the beginning of the sequence, so some of the formulas may need to be adjusted slightly.
A100193
a(n) = Sum_{k=0..n} binomial(2*n,n+k)*3^k.
Original entry on oeis.org
1, 5, 27, 146, 787, 4230, 22686, 121476, 649731, 3472382, 18546922, 99023292, 528535726, 2820451964, 15048601308, 80283276936, 428271193827, 2284478396334, 12185310873138, 64993897108236, 346655914156602, 1848916875734004, 9861224376230628, 52594507923308856
Offset: 0
-
Table[Binomial[2*n,n]*Hypergeometric2F1[1,-n,1+n,-3],{n,0,20}] (* Vaclav Kotesovec, Feb 03 2014 *)
A025170
Expansion of g.f.: 1/(1 + 2*x + 9*x^2).
Original entry on oeis.org
1, -2, -5, 28, -11, -230, 559, 952, -6935, 5302, 51811, -151340, -163619, 1689298, -1906025, -11391632, 39937489, 22649710, -404736821, 605626252, 2431378885, -10313394038, -1255621889, 95331790120, -179362983239, -499260144602, 2612787138355, -732232975292
Offset: 0
-
[(-3)^n*Evaluate(ChebyshevU(n+1),1/3): n in [0..50]]; // G. C. Greubel, Jan 02 2024
-
Table[3^n ChebyshevU[n, -1/3], {n, 0, 24}]
-
a(n)=if(n<0,0,polcoeff(1/(1+2*x+9*x^2)+x*O(x^n),n))
-
a(n)=if(n<0, 0, 3^n*subst(poltchebi(n+1)+3*poltchebi(n),'x,-1/3)*3/8) /* Michael Somos, Sep 15 2005 */
-
a(n)=if(n<0, 0, (-1)^n*matdet(matrix(n,n,i,j, if(abs(i-j)<2, 2+abs(i-j))))) /* Michael Somos, Sep 15 2005 */
-
[3^n*chebyshev_U(n,-1/3) for n in range(41)] # G. C. Greubel, Jan 02 2024
Showing 1-7 of 7 results.
Comments