A168175
Expansion of 1/(1 - 4*x + 7*x^2).
Original entry on oeis.org
1, 4, 9, 8, -31, -180, -503, -752, 513, 7316, 25673, 51480, 26209, -255524, -1205559, -3033568, -3695359, 6453540, 51681673, 161551912, 284435937, 6880364, -1963530103, -7902282960, -17864421119, -16141703756, 60484132809
Offset: 0
G.f. = 1 + 4*x + 9*x^2 + 8*x^3 - 31*x^4 - 180*x^5 - 503*x^6 - 752*x^7 + ... - _Michael Somos_, Feb 23 2020
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.
-
I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
-
CoefficientList[Series[1/(1-4x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {4,-7},{1,4},30] (* Harvey P. Dale, Nov 28 2014 *)
-
{a(n) = my(s=1, t=1); if( n<0, n=-2-n; s=-1; t=1/7); s * t^(n+1) * polcoeff(1 / (1 - 4*x + 7*x^2) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2020 */
A190965
a(n) = 4*a(n-1) - 6*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 4, 10, 16, 4, -80, -344, -896, -1520, -704, 6304, 29440, 79936, 143104, 92800, -487424, -2506496, -7101440, -13366784, -10858496, 36766720, 212217856, 628271104, 1239777280, 1189482496, -2680733696, -17859829760, -55354916864, -114260688896
Offset: 0
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Beata Bajorska-Harapińska, Barbara Smoleń, and Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-6).
Cf.
A190958 (index to generalized Fibonacci sequences).
-
[n le 2 select n-1 else 4*Self(n-1) -6*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 10 2024
-
w := I*sqrt(2): a := n -> (w/4)*((2 - w)^n - (2 + w)^n):
seq(simplify(a(n)), n = 0..20); # (after Taras Goy), Peter Luschny, Jan 03 2025
-
LinearRecurrence[{4,-6}, {0,1}, 50]
-
a(n)=([0,1;0,0]*[0,-6;1,4]^n)[1,1] \\ Charles R Greathouse IV, May 31 2011
-
A190965=BinaryRecurrenceSequence(4,-6,0,1)
[A190965(n) for n in range(41)] # G. C. Greubel, Jan 10 2024
A181738
T(n, k) is the coefficient of x^k of the polynomial p(n) which is defined as the scalar part of P(n) = Q(x+1, 1, 1, 1) * P(n-1) for n > 0 and P(0) = Q(1, 0, 0, 0) where Q(a, b, c, d) is a quaternion, triangle read by rows.
Original entry on oeis.org
1, 1, 1, -2, 2, 1, -8, -6, 3, 1, -8, -32, -12, 4, 1, 16, -40, -80, -20, 5, 1, 64, 96, -120, -160, -30, 6, 1, 64, 448, 336, -280, -280, -42, 7, 1, -128, 512, 1792, 896, -560, -448, -56, 8, 1, -512, -1152, 2304, 5376, 2016, -1008, -672, -72, 9, 1, -512, -5120, -5760, 7680, 13440, 4032, -1680, -960, -90, 10, 1
Offset: 0
The list of polynomials starts 1, 1 + x, -2 + 2*x + x^2, -8 - 6*x + 3*x^2 + x^3, ... and the list of coefficients of the polynomials starts:
{ 1},
{ 1, 1},
{ -2, 2, 1},
{ -8, -6, 3, 1},
{ -8, -32, -12, 4, 1},
{ 16, -40, -80, -20, 5, 1},
{ 64, 96, -120, -160, -30, 6, 1},
{ 64, 448, 336, -280, -280, -42, 7, 1},
{-128, 512, 1792, 896, -560, -448, -56, 8, 1},
{-512, -1152, 2304, 5376, 2016, -1008, -672, -72, 9, 1},
{-512, -5120, -5760, 7680, 13440, 4032, -1680, -960, -90, 10, 1}.
-
Needs["Quaternions`"]
P[x_, 0 ] := Quaternion[1, 0, 0, 0];
P[x_, n_] := P[x, n] = Quaternion[x + 1, 1, 1, 1] ** P[x, n - 1];
Table[CoefficientList[P[x, n][[1]], x], {n, 0, 10}] // Flatten
-
R. = QQ[]
K = R.fraction_field()
H. = QuaternionAlgebra(K, -1, -1)
def Q(a, b, c, d): return H(a + b*i + c*j + d*k)
@cached_function
def P(n):
return Q(x+1,1,1,1)*P(n-1) if n > 0 else Q(1,0,0,0)
def p(n): return P(n)[0].numerator().list()
flatten([p(n) for n in (0..10)]) # Kudos to William Stein, Peter Luschny, Sep 14 2018
A266046
Real part of Q^n, where Q is the quaternion 2 + j + k.
Original entry on oeis.org
1, 2, 2, -4, -28, -88, -184, -208, 272, 2336, 7712, 16832, 21056, -16768, -193408, -673024, -1531648, -2088448, 836096, 15875072, 58483712, 138684416, 203835392, -16764928, -1290072064, -5059698688, -12498362368, -19635257344, -3550855168, 103608123392
Offset: 0
- Stanislav Sykora, Table of n, a(n) for n = 0..1000
- Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras Vol. 29, No. 3 (2019), Article 54.
- Index entries for linear recurrences with constant coefficients, signature (4,-6).
-
[n le 2 select n else 4*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 22 2015
-
LinearRecurrence[{4, -6}, {1, 2}, 30] (* Bruno Berselli, Dec 22 2015 *)
-
\\ A simple function to generate quaternion powers:
QuaternionToN(r, u, v, w, nmax) = {local (M); M = matrix(nmax+1, 4); M[1, 1]=1; for(n=2, nmax+1, M[n, 1]=r*M[n-1, 1]-u*M[n-1, 2]-v*M[n-1, 3]-w*M[n-1, 4]; M[n, 2]=u*M[n-1, 1]+r*M[n-1, 2]+w*M[n-1, 3]-v*M[n-1, 4]; M[n, 3]=v*M[n-1, 1]-w*M[n-1, 2]+r*M[n-1, 3]+u*M[n-1, 4]; M[n, 4]=w*M[n-1, 1]+v*M[n-1, 2]-u*M[n-1, 3]+r*M[n-1, 4]; ); return (M); }
a=QuaternionToN(2, 0, 1, 1, 1000)[,1]; \\ Select the real parts
-
Vec((1-2*x)/(1-4*x+6*x^2) + O(x^40)) \\ Colin Barker, Dec 21 2015
A094944
A sequence with a(n)/a(n-1) converging to 7, generated from a semi-magic square.
Original entry on oeis.org
1, 17, 121, 769, 5681, 39121, 274345, 1922945, 13447009, 94165777, 659108825, 4613711233, 32296542097, 226073894609, 1582520918281, 11077645104385, 77543495432897, 542804558486545, 3799631689665337, 26597422073425409
Offset: 1
a(4) = 769 since M^4 * [1 0 0] = [769 824 808].
Cf.
A094943 uses the same format and operations but with different terms.
-
a[n_] := (MatrixPower[{{1, 4, 2}, {2, 1, 4}, {4, 2, 1}}, n].{{1}, {0}, {0}})[[1, 1]]; Table[ a[n], {n, 10}] (* Robert G. Wilson v, May 29 2004 *)
Showing 1-5 of 5 results.
Comments