A319234 T(n, k) is the coefficient of x^k of the polynomial p(n) which is defined as the scalar part of P(n) = Q(x, 1, 1, 1) * P(n-1) for n > 0 and P(0) = Q(1, 0, 0, 0) where Q(a, b, c, d) is a quaternion, triangle read by rows.
1, 0, 1, -3, 0, 1, 0, -9, 0, 1, 9, 0, -18, 0, 1, 0, 45, 0, -30, 0, 1, -27, 0, 135, 0, -45, 0, 1, 0, -189, 0, 315, 0, -63, 0, 1, 81, 0, -756, 0, 630, 0, -84, 0, 1, 0, 729, 0, -2268, 0, 1134, 0, -108, 0, 1, -243, 0, 3645, 0, -5670, 0, 1890, 0, -135, 0, 1
Offset: 0
Examples
The list of polynomials starts 1, x, x^2 - 3, x^3 - 9*x, x^4 - 18*x^2 + 9, ... and the list of coefficients of the polynomials starts: [0] [ 1] [1] [ 0, 1] [2] [ -3, 0, 1] [3] [ 0, -9, 0, 1] [4] [ 9, 0, -18, 0, 1] [5] [ 0, 45, 0, -30, 0, 1] [6] [-27, 0, 135, 0, -45, 0, 1] [7] [ 0, -189, 0, 315, 0, -63, 0, 1] [8] [ 81, 0, -756, 0, 630, 0, -84, 0, 1] [9] [ 0, 729, 0, -2268, 0, 1134, 0, -108, 0, 1]
Links
- Wikipedia, Quaternion
Crossrefs
Inspired by the sister sequence A181738 of Roger L. Bagula.
Programs
-
Mathematica
Needs["Quaternions`"] P[x_, 0 ] := Quaternion[1, 0, 0, 0]; P[x_, n_] := P[x, n] = Quaternion[x, 1, 1, 1] ** P[x, n - 1]; Table[CoefficientList[P[x, n][[1]], x], {n, 0, 10}] // Flatten
-
Sage
R.
= QQ[] K = R.fraction_field() H. = QuaternionAlgebra(K, -1, -1) def Q(a, b, c, d): return H(a + b*i + c*j + d*k) @cached_function def P(n): return Q(x, 1, 1, 1)*P(n-1) if n > 0 else Q(1, 0, 0, 0) def p(n): return P(n)[0].numerator().list() flatten([p(n) for n in (0..10)]) # Kudos to William Stein
Comments