cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A094423 a(n) = A045873(n)^2.

Original entry on oeis.org

1, 4, 1, 144, 361, 484, 19321, 28224, 128881, 2427364, 1745041, 26501904, 285643801, 64995844, 4675961161, 31354493184, 149793121, 741117817924, 3178942795681, 545370434064, 107989070784841, 292105630845604
Offset: 1

Views

Author

Ralf Stephan, May 04 2004

Keywords

Comments

The g.f. is an example of a rational function with nonnegative integer coefficients that is not N-rational.

Crossrefs

Programs

  • Magma
    I:=[1,4,1]; [n le 3 select I[n] else -Self(n-1) +5*Self(n-2) +125*Self(n-3): n in [1..41]]; // G. C. Greubel, Jan 11 2024
    
  • Mathematica
    LinearRecurrence[{-1,5,125}, {1,4,1}, 40] (* G. C. Greubel, Jan 11 2024 *)
  • PARI
    Vec((x+5*x^2)/(1+x-5*x^2-125*x^3) + O(x^30)) \\ Michel Marcus, Aug 28 2015
    
  • SageMath
    @CachedFunction
    def a(n): # a = A094423
        if (n<4): return (0,1,4,1)[n]
        else: return -a(n-1) + 5*a(n-2) + 125*a(n-3)
    [a(n) for n in range(1,41)] # G. C. Greubel, Jan 11 2024

Formula

G.f.: x*(1+5*x)/(1+x-5*x^2-125*x^3).
a(n) = A250102(n)/16.
a(n) = (1/16)*( 2*5^n - (1+2*i)^(2*n) - (1-2*i)^(2*n) ) = (1/4)*( Im(1+2*i)^n )^2 = (1/4) * 5^n * sin(n*arctan(2))^2.
From G. C. Greubel, Jan 11 2024: (Start)
a(n) = (1/8)*5^n*(1 - ChebyshevU(n, -3/5) - (3/5)*ChebyshevU(n-1, -3/5)).
a(n) = (1/8)*( 5^n - (-1)^n*A066771(n) ).
E.g.f.: (1/8)*exp(-3*x)*(exp(8*x) - cos(4*x)). (End)

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A006495 Real part of (1 + 2*i)^n, where i is sqrt(-1).

Original entry on oeis.org

1, 1, -3, -11, -7, 41, 117, 29, -527, -1199, 237, 6469, 11753, -8839, -76443, -108691, 164833, 873121, 922077, -2521451, -9653287, -6699319, 34867797, 103232189, 32125393, -451910159, -1064447283, 130656229, 5583548873
Offset: 0

Views

Author

Keywords

Comments

Row sums of the Euler related triangle A117411. Partial sums are A006495. - Paul Barry, Mar 16 2006
Binomial transform of [1, 0, -4, 0, 16, 0, -64, 0, 256, 0, ...], i.e. powers of -4 with interpolated zeros. - Philippe Deléham, Dec 02 2008
The absolute values of these numbers are the odd numbers y such that x^2 + y^2 = 5^n with x and y coprime. See A098122. - T. D. Noe, Apr 14 2011
Pisano period lengths: 1, 1, 8, 1, 4, 8, 48, 4, 24, 4, 60, 8, 12, 48, 8, 8, 16, 24, 90, 4, ... - R. J. Mathar, Aug 10 2012
Multiplied by a signed sequence of 2's we obtain 2, -2, -6, 22, -14, -82, 234, -58, -1054, 2398, 474, -12938, ..., the Lucas V(-2,5) sequence. - R. J. Mathar, Jan 08 2013

Examples

			1 + x - 3*x^2 - 11*x^3 - 7*x^4 + 41*x^5 + 117*x^6 + 29*x^7 - 527*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006496, A045873 (partial sums).

Programs

  • Magma
    A006495:=func< n | Integers()!Real((1+2*Sqrt(-1))^n) >; [ A006495(n): n in [0..30] ]; // Klaus Brockhaus, Feb 04 2011
    
  • Maple
    a := n -> hypergeom([1/2 - n/2, -n/2], [1/2], -4):
    seq(simplify(a(n)), n=0..28); # Peter Luschny, Jul 26 2020
  • Mathematica
    Table[Re[(1+2I)^n],{n,0,29}] (* Giovanni Resta, Mar 28 2006 *)
  • PARI
    {a(n) = local(A); n++; if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (4*k + 1) * A[k-1] - 8 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • PARI
    a(n) = real( (1 + 2*I)^n ) \\ Charles R Greathouse IV, Nov 21 2014
    
  • PARI
    {a(n) = my(A=1);
    A = sum(m=0, n+1, (1 + (-1)^m*I)^m * x^m / (1 - (-1)^m*I*x +x*O(x^n))^(m+1) ); polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2019
  • Sage
    [lucas_number2(n,2,5)/2 for n in range(0,30)] # Zerinvary Lajos, Jul 08 2008
    

Formula

a(n) = (1/2)*((1+2*i)^n + (1-2*i)^n). - Benoit Cloitre, Oct 28 2002
From Paul Barry, Mar 16 2006: (Start)
G.f.: (1-x)/(1 - 2*x + 5*x^2);
a(n) = 2*a(n-1) - 5*a(n-2);
a(n) = 5^(n/2)*cos(n*atan(1/3) + Pi*n/4);
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,k-j)*C(j,n-k)*(-4)^(n-k). (End)
A000351(n) = a(n)^2 + A006496(n)^2. - Fabrice Baubet (intih(AT)free.fr), May 28 2007
a(n) = upper left and lower right terms of the 2 X 2 matrix [1,-2; 2,1]^n. - Gary W. Adamson, Mar 28 2008
a(n) = Sum_{k=0..n} A124182(n,k)*(-5)^(n-k). - Philippe Deléham, Nov 01 2008
a(n) = Sum_{k=0..n} A098158(n,k)*(-4)^(n-k). - Philippe Deléham, Nov 14 2008
a(n) = (4*n+5)*a(n-1) - 8*Sum_{k=1..n} a(k-1)*a(n-k) if n > 0. - Michael Somos, Jul 23 2011
E.g.f.: exp(x)*cos(2*x). - Sergei N. Gladkovskii, Jul 22 2012
a(n) = 5^(n/2) * cos(n*arctan(2)). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k+1)/(x*(4*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
From Paul D. Hanna, Mar 09 2019: (Start)
G.f.: Sum_{n>=0} (1 + (-1)^n*i)^n * x^n / (1 - (-1)^n*i*x)^(n+1).
G.f.: Sum_{n>=0} (1 - (-1)^n*i)^n * x^n / (1 + (-1)^n*i*x)^(n+1).
(End)
a(n) = hypergeom([1/2 - n/2, -n/2], [1/2], -4). - Peter Luschny, Jul 26 2020

Extensions

Signs from Christian G. Bower, Nov 15 1998
Corrected by Giovanni Resta, Mar 28 2006

A088137 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 1, -4, -11, -10, 13, 56, 73, -22, -263, -460, -131, 1118, 2629, 1904, -4079, -13870, -15503, 10604, 67717, 103622, 4093, -302680, -617639, -327238, 1198441, 3378596, 3161869, -3812050, -17109707, -22783264, 5762593, 79874978, 142462177, 45299420, -336787691
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The Lucas U(P=2, Q=3) sequence. - R. J. Mathar, Oct 24 2012
Hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 2 - 3/(2 - 3/(2 - 3/(2 - ... - 3/2))) with n 3's. - Greg Dresden, Oct 06 2019
With different signs, 0, 1, -2, 1, 4, -11, 10, 13, -56, 73, 22, -263, 460, ... also the Lucas U(-2,3) sequence. - R. J. Mathar, Jan 08 2013
From Peter Bala, Apr 01 2018: (Start)
The companion Lucas sequence V(n,2,3) is A087455.
Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = a(n)/A087455(n). Cf. A025172 and A127357. (End)

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 2*Self(n-1)-3*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
  • Maple
    A[0]:= 0: A[1]:= 1:
    for n from 2 to 100 do A[n]:= 2*A[n-1] - 3*A[n-2] od:
    seq(A[n],n=0..100); # Robert Israel, Aug 05 2014
  • Mathematica
    LinearRecurrence[{2,-3},{0,1},40] (* Harvey P. Dale, Nov 03 2014 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x/(1-2*x+3*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,3) for n in range(0, 38)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 3^(n/2)*sin(n*atan(sqrt(2)))/sqrt(2).
|3*A087455(n) - A087455(n+1)| = 2*a(n+1) or 3*A087455(n) + A087455(n+1) = 2*a(n+1). - Creighton Dement, Aug 02 2004
G.f.: x/(1 - 2*x + 3*x^2).
E.g.f.: exp(x)*sin(sqrt(2)*x)/sqrt(2).
a(n) = 2*a(n-1) - 3*a(n-2) for n > 1, a(0)=0, a(1)=1.
a(n) = ((1 + i*sqrt(2))^n - (1 - i*sqrt(2))^n)/(2*i*sqrt(2)), where i=sqrt(-1).
a(n) = Im((1 + i*sqrt(2))^n/sqrt(2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k+1)(-2)^k.
3^(n+1) = 9*(A087455(n))^2 + 2*(A087455(n+1))^2 - 2*(a(n+2))^2; 3^n = a(n+1)^2 + 3*a(n)^2 - 2*a(n+1)*a(n) for n > 0 - Creighton Dement, Jan 20 2005
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 3*x)/( x*(4*k+4 - 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 06 2013
a(n+1) = Sum_{k=0..n} A123562(n,k). - Philippe Deléham, Nov 23 2013
a(n) = n*hypergeom([(1-n)/2,(2-n)/2],[3/2],-2). - Gerry Martens, Sep 03 2023

A088138 Generalized Gaussian Fibonacci integers.

Original entry on oeis.org

0, 1, 2, 0, -8, -16, 0, 64, 128, 0, -512, -1024, 0, 4096, 8192, 0, -32768, -65536, 0, 262144, 524288, 0, -2097152, -4194304, 0, 16777216, 33554432, 0, -134217728, -268435456, 0, 1073741824, 2147483648, 0, -8589934592, -17179869184, 0, 68719476736, 137438953472
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Comments

The sequence 0,1,-2,0,8,-16,... has g.f. x/(1+2*x-4*x^2), a(n) = 2^n*sin(2n*Pi/3)/sqrt(3) and is the inverse binomial transform of sin(sqrt(3)*x)/sqrt(3): 0,1,-3,0,9,...
a(n+1) is the Hankel transform of A100192. - Paul Barry, Jan 11 2007
a(n+1) is the trinomial transform of A010892: a(n+1) = Sum_{k=0..2n} trinomial(n,k)*A010892(k+1) where trinomial(n, k) = trinomial coefficients (A027907). - Paul Barry, Sep 10 2007
a(n+1) is the Hankel transform of A100067. - Paul Barry, Jun 16 2009
From Paul Curtz, Oct 04 2009: (Start)
1) a(n) = A131577(n)*A128834(n).
2) Binomial transform of 0,1,0,-3,0,9,0,-27, see A000244.
3) Sequence is identical to every 2n-th difference divided by (-3)^n.
4) a(3n) + a(3n+1) + a(3n+2) = (-1)^n*3*A001018(n) for n >= 1.
5) For missing terms in a(n) see A013731 = 4*A001018. (End)
The coefficient of i of Q^n, where Q is the quaternion 1+i+j+k. Due to symmetry, also the coefficients of j and of k. - Stanislav Sykora, Jun 11 2012 [The coefficients of 1 are in A138230. - Wolfdieter Lang, Jan 28 2016]
With different signs, 0, 1, -2, 0, 8, -16, 0, 64, -128, 0, 512, -1024, ... is the Lucas U(-2,4) sequence. - R. J. Mathar, Jan 08 2013

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..40] do a[n]:=2*a[n-1]-4*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) - 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2018
    
  • Maple
    M:= <<1+I,1+I>|>:
    T:= <<-I/2,0>|<0,I/2>>:
    seq(LinearAlgebra:-Trace(T.M^n),n=0..100); # Robert Israel, Jan 28 2016
  • Mathematica
    Join[{a=0,b=1},Table[c=2*b-4*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    LinearRecurrence[{2, -4}, {0, 1}, 40] (* Vincenzo Librandi, Jan 29 2016 *)
    Table[2^(n-2)*((-1)^Quotient[n-1,3]+(-1)^Quotient[n,3]), {n,0,40}] (*Federico Provvedi,Apr 24 2022*)
  • PARI
    /* lists powers of any quaternion */
    QuaternionToN(a,b,c,d,nmax) = {local (C);C = matrix(nmax+1,4);C[1,1]=1;for(n=2,nmax+1,C[n,1]=a*C[n-1,1]-b*C[n-1,2]-c*C[n-1,3]-d*C[n-1,4];C[n,2]=b*C[n-1,1]+a*C[n-1,2]+d*C[n-1,3]-c*C[n-1,4];C[n,3]=c*C[n-1,1]-d*C[n-1,2]+a*C[n-1,3]+b*C[n-1,4];C[n,4]=d*C[n-1,1]+c*C[n-1,2]-b*C[n-1,3]+a*C[n-1,4];);return (C);} /* Stanislav Sykora, Jun 11 2012 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1-2*x+4*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • PARI
    a(n) = 2^(n-1)*polchebyshev(n-1, 2, 1/2); \\ Michel Marcus, May 02 2022
    
  • Sage
    [lucas_number1(n,2,4) for n in range(0, 39)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: x/(1-2*x+4*x^2).
E.g.f.: exp(x)*sin(sqrt(3)*x)/sqrt(3).
a(n) = 2*a(n-1) - 4*a(n-2), a(0)=0, a(1)=1.
a(n) = ((1+i*sqrt(3))^n - (1-i*sqrt(3))^n)/(2*i*sqrt(3)).
a(n) = Im( (1+i*sqrt(3))^n/sqrt(3) ).
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k+1)*(-3)^k.
From Paul Curtz, Oct 04 2009: (Start)
a(n) = a(n-1) + a(n-2) + 2*a(n-3).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4). (End)
E.g.f.: exp(x)*sin(sqrt(3)*x)/sqrt(3) = G(0)*x^2 where G(k)= 1 + (3*k+2)/(2*x - 32*x^5/(16*x^4 - 3*(k+1)*(3*k+2)*(3*k+4)*(3*k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2012
G.f.: x/(1-2*x+4*x^2) = 2*x^2*G(0) where G(k)= 1 + 1/(2*x - 32*x^5/(16*x^4 - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 27 2012
a(n) = -2^(n-1)*Product_{k=1..n}(1 + 2*cos(k*Pi/n)) for n >= 1. - Peter Luschny, Nov 28 2019
a(n) = 2^(n-1) * U(n-1, 1/2), where U(n, x) is the Chebyshev polynomial of the second kind. - Federico Provvedi, Apr 24 2022

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A006496 Imaginary part of (1+2i)^n.

Original entry on oeis.org

0, 2, 4, -2, -24, -38, 44, 278, 336, -718, -3116, -2642, 10296, 33802, 16124, -136762, -354144, -24478, 1721764, 3565918, -1476984, -20783558, -34182196, 35553398, 242017776, 306268562, -597551756, -2726446322, -2465133864, 8701963882, 29729597084, 15949374758
Offset: 0

Views

Author

Keywords

Comments

The absolute values of these numbers are the even numbers x such that x^2 + y^2 = 5^n with x and y coprime. See A098122. - T. D. Noe, Apr 14 2011

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - 5*a(n-2); a(0)=0, a(1)=2. - T. D. Noe, Nov 09 2006
A000351(n) = A006495(n)^2 + a(n)^2. - Fabrice Baubet, May 28 2007
From R. J. Mathar, Apr 06 2008: (Start)
O.g.f.: 2*x/(1 - 2*x + 5*x^2).
a(n) = 2*A045873(n). (End)
E.g.f.: exp(x)*sin(2*x). - Sergei N. Gladkovskii, Jul 22 2012
a(n)/A006495(n) = -tan(2*n*arctan(phi)), where phi is the golden ratio (A001622). - Amiram Eldar, Jan 13 2022

Extensions

Signs from Christian G. Bower, Nov 15 1998
Corrected by T. D. Noe, Nov 09 2006
More terms from R. J. Mathar, Apr 06 2008

A088139 a(n) = 2*a(n-1) - 6*a(n-2), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, -2, -16, -20, 56, 232, 128, -1136, -3040, 736, 19712, 35008, -48256, -306560, -323584, 1192192, 4325888, 1498624, -22958080, -54907904, 27932672, 385312768, 603029504, -1105817600, -5829812224, -5024718848, 24929435648, 80007184384
Offset: 0

Views

Author

Paul Barry, Sep 20 2003

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=2*a[n-1]-6*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) - 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 22 2018
    
  • Maple
    seq(coeff(series(x/(1-2*x+6*x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    Join[{a=0,b=1},Table[c=2*b-6*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011*)
    TrigExpand@Table[(6^(n/2) Sin[n ArcTan[Sqrt[5]]])/Sqrt[5], {n, 0, 20}] (* or *)
    Table[Sum[(-5)^k Binomial[n, 2 k + 1], {k, 0, n/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 20 2016 *)
    LinearRecurrence[{2,-6},{0,1},40] (* Harvey P. Dale, Nov 22 2024 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-2*x+6*x^2))) \\ G. C. Greubel, Oct 22 2018
    
  • Sage
    [lucas_number1(n,2,6) for n in range(0, 30)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: x/(1-2*x+6*x^2).
E.g.f.: exp(x)*sin(sqrt(5)*x)/sqrt(5).
a(n) = ((1+i*sqrt(5))^n-(1-i*sqrt(5))^n)/(2*i*sqrt(5)).
a(n) = Im{(1+i*sqrt(5))^n/sqrt(5)}.
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k+1)(-5)^k.
a(n+1) = (-1)^n*Sum_{k, 0<=k<=n} A172250(n,k)*(-2)^k. - Philippe Deléham, Feb 15 2012

A116484 Expansion of (-1+3*x)/(5*x^2 + 1 - 2*x).

Original entry on oeis.org

-1, 1, 7, 9, -17, -79, -73, 249, 863, 481, -3353, -9111, -1457, 42641, 92567, -28071, -518977, -897599, 799687, 6087369, 8176303, -14084239, -69049993, -67678791, 209892383, 758178721, 466895527, -2857102551, -8048682737, -1811852719
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Comments

Binomial transform of signed powers of 2: (-1, 2, 4, -8, -16, 32, 64, -128, -256, 512, 1024). Inverse binomial transform of (-1, 0, 8, 32, 64, 0, -512, -2048, -4096, 0, 32768, 131072, 262144, 0, -2097152, -8388608). Compare with A116483.
Floretion Algebra Multiplication Program, FAMP Code: 2basekforseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' ; 1vesforseq = A000004

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-1+3x)/(5x^2+1-2x),{x,0,40}],x] (* or *) LinearRecurrence[{2,-5},{-1,1},40] (* Harvey P. Dale, Jun 24 2013 *)

Formula

a(n) = 3*A045873(n) - A045873(n+1). - R. J. Mathar, Apr 23 2009
E.g.f.: exp(x)*(sin(2*x) - cos(2*x)). - Arkadiusz Wesolowski, Aug 31 2012
a(0)=-1, a(1)=1, a(n) = 2*a(n-1) - 5*a(n-2). - Harvey P. Dale, Jun 24 2013
a(n) = (1/2)*((-1 - i)*(1 + 2*i)^n - (1 - i)*(1 - 2*i)^n), n >= 0, where i=sqrt(-1). - Taras Goy, Apr 20 2019

A193726 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(x+2)^n.

Original entry on oeis.org

1, 1, 2, 2, 9, 10, 4, 28, 65, 50, 8, 76, 270, 425, 250, 16, 192, 920, 2200, 2625, 1250, 32, 464, 2800, 9000, 16250, 15625, 6250, 64, 1088, 7920, 32000, 77500, 112500, 90625, 31250, 128, 2496, 21280, 103600, 315000, 612500, 743750, 515625, 156250
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (2,3,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
   1;
   1,   2;
   2,   9,  10;
   4,  28,  65,   50;
   8,  76, 270,  425,  250;
  16, 192, 920, 2200, 2625, 1250;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193726
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return k+1;
      else return 2*T(n-1, k) + 5*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 02 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 1; b = 2; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193726 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193727 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 2*T[n-1, k] + 5*T[n -1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 02 2023 *)
  • SageMath
    def T(n, k): # T = A193726
        if (k<0 or k>n): return 0
        elif (n<2): return k+1
        else: return 2*T(n-1, k) + 5*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 02 2023

Formula

T(n,k) = 5*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-x-3*x*y)/(1-2*x-5*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 02 2023: (Start)
T(n, 0) = A011782(n).
T(n, n) = A020699(n).
T(n, n-1) = A081040(n-1).
Sum_{k=0..n} T(n, k) = A169634(n-1) + (4/7)*[n=0].
Sum_{k=0..n} (-1)^k * T(n, k) = (-1)^n*A133494(n) = -A141413(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A002532(n) + 2*A002532(n-1) + (3/5)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A045873(n) - 2*A045873(n-1) + (3/5)*[n=0]. (End)
Showing 1-10 of 12 results. Next