cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A045873 a(n) = A006496(n)/2.

Original entry on oeis.org

0, 1, 2, -1, -12, -19, 22, 139, 168, -359, -1558, -1321, 5148, 16901, 8062, -68381, -177072, -12239, 860882, 1782959, -738492, -10391779, -17091098, 17776699, 121008888, 153134281, -298775878, -1363223161, -1232566932
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A006495. - Paul Barry, Mar 16 2006
This is the Lucas U(P=2,Q=5) sequence. - R. J. Mathar, Oct 24 2012
With different signs, 0, 1, -2, -1, 12, -19, -22, 139, -168, -359, 1558, ... we obtain the Lucas U(-2,5) sequence. - R. J. Mathar, Jan 08 2013

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=2*a[n-1]-5*a[n-2]; od; a; # Muniru A Asiru, Oct 23 2018
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1) - 5*Self(n-2): n in [1..50]]; // G. C. Greubel, Oct 22 2018
    
  • Maple
    seq(coeff(series(x/(1-2*x+5*x^2),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    LinearRecurrence[{2,-5}, {0,1}, 40] (* G. C. Greubel, Jan 11 2024 *)
  • PARI
    concat(0,Vec(1/(1-2*x+5*x^2)+O(x^99))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • Sage
    [lucas_number1(n,2,5) for n in range(0, 29)] # Zerinvary Lajos, Apr 23 2009
    
  • SageMath
    A045873=BinaryRecurrenceSequence(2,-5,0,1)
    [A045873(n) for n in range(41)] # G. C. Greubel, Jan 11 2024

Formula

a(n)^2 = A094423(n).
From Paul Barry, Sep 20 2003: (Start)
O.g.f.: x/(1 - 2*x + 5*x^2).
E.g.f.: exp(x)*sin(2*x)/2.
a(n) = 2*a(n-1) - 5*a(n-2), a(0)=0, a(1)=1.
a(n) = ((1 + 2*i)^n - (1 - 2*i)^n)/(4*i), where i=sqrt(-1).
a(n) = Im{(1 + 2*i)^n/2}.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k+1)*(-4)^k. (End)
a(n+1) = Sum_{k=0..n} binomial(k,n-k)*2^k*(-5/2)^(n-k). - Paul Barry, Mar 16 2006
G.f.: 1/(4*x - 1/G(0)) where G(k) = 1 - (k+1)/(1 - x/(x - (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 - 5*x)/( x*(4*k+4 - 5*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = 5^((n-1)/2)*ChebyshevU(n-1, 1/sqrt(5)). - G. C. Greubel, Jan 11 2024

Extensions

More terms from Paul Barry, Sep 20 2003

A250102 a(n) = 2*5^n - (1+2i)^(2n) - (1-2i)^(2n) where i = sqrt(-1).

Original entry on oeis.org

0, 16, 64, 16, 2304, 5776, 7744, 309136, 451584, 2062096, 38837824, 27920656, 424030464, 4570300816, 1039933504, 74815378576, 501671890944, 2396689936, 11857885086784, 50863084730896, 8725926945024, 1727825132557456, 4673690093529664, 5056176437385616, 234290415599944704
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2014

Keywords

Crossrefs

Equals 16*A094423.

Programs

  • Mathematica
    Array[2*5^# - (1 + 2 I)^(2 #) - (1 - 2 I)^(2 #) &, 25, 0] (* Michael De Vlieger, Jun 19 2018 *)
    LinearRecurrence[{-1,5,125},{0,16,64},30] (* Harvey P. Dale, May 26 2020 *)
  • PARI
    a(n) = 2*5^n - (1+2*I)^(2*n) - (1-2*I)^(2*n) \\ Michel Marcus, Aug 28 2015
    
  • PARI
    concat(0, Vec(16*x*(1 + 5*x) / ((1 - 5*x)*(1 + 6*x + 25*x^2)) + O(x^30))) \\ Colin Barker, Feb 20 2019

Formula

From Colin Barker, Feb 20 2019: (Start)
G.f.: 16*x*(1 + 5*x) / ((1 - 5*x)*(1 + 6*x + 25*x^2)).
a(n) = -a(n-1) + 5*a(n-2) + 125*a(n-3) for n>2.
(End)
Showing 1-2 of 2 results.