A006542
a(n) = binomial(n,3)*binomial(n-1,3)/4.
Original entry on oeis.org
1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, 896126, 1163800, 1495000, 1901250, 2395575, 2992626, 3708810, 4562425, 5573800, 6765440, 8162176, 9791320, 11682825, 13869450
Offset: 4
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- Isaac Ahern and Sam Cook, Affine Symmetry Tensors in Minkowski Space, American Journal of Undergraduate Research, Volume 13, Issue 3, August 2016.
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015.
- V. E. Hoggatt, Jr., Letter to N. J. A. Sloane, Apr 1977
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31.
- G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 6, 25.
- Robert Munafo, C(n,3)C(n-1,3)/4
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences
A000012,
A000217,
A002415,
A006542,
A006857,
A108679,
A134288,
A134289,
A134290,
A134291,
A140925,
A140935,
A169937.
Cf.
A000332,
A000579,
A001263,
A002378,
A004068,
A005585,
A005891,
A006322,
A006414,
A047819,
A107891,
A114242.
Fourth column of the table of Narayana numbers
A001263.
Apart from a scale factor, a column of
A124428.
-
List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # G. C. Greubel, Feb 24 2019
-
[ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // Wesley Ivan Hurt, Jun 17 2014
-
A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # Wesley Ivan Hurt, Jun 17 2014
-
Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]
-
a(n)=n*((n-1)*(n-2))^2*(n-3)/144
-
[n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # G. C. Greubel, Feb 24 2019
Zabroki and Lajos formulas offset corrected by
Gary Detlefs, Dec 05 2011
A006322
4-dimensional analog of centered polygonal numbers.
Original entry on oeis.org
1, 8, 31, 85, 190, 371, 658, 1086, 1695, 2530, 3641, 5083, 6916, 9205, 12020, 15436, 19533, 24396, 30115, 36785, 44506, 53383, 63526, 75050, 88075, 102726, 119133, 137431, 157760, 180265, 205096, 232408, 262361, 295120, 330855, 369741, 411958, 457691, 507130
Offset: 1
Albert Rich (Albert_Rich(AT)msn.com)
An illustration for a(5)=190: 5*(1+2+3+4+5)+4*(2+3+4+5)+3*(3+4+5)+2*(4+5)+1*(5) gives 75+56+36+18+5=190. - _J. M. Bergot_, Feb 13 2018
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/4).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Abderrahim Arabi, Hacène Belbachir, and Jean-Philippe Dubernard, Plateau Polycubes and Lateral Area, arXiv:1811.05707 [math.CO], 2018. See Column 2 Table 2 p. 9.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]. See p. 31.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
List([1..40], n->5*Binomial(n+2,4) + Binomial(n+1,2)); # Muniru A Asiru, Feb 13 2018
-
[n*(n+1)*(5*n^2 +5*n +2)/24: n in [1..40]]; // G. C. Greubel, Sep 02 2019
-
a:=n->5*binomial(n+2,4) + binomial(n+1,2): seq(a(n), n=1..40); # Muniru A Asiru, Feb 13 2018
-
Table[5*Binomial[n+2, 4] + Binomial[n+1, 2], {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
CoefficientList[Series[(1+3x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 09 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,8,31,85,190},40] (* Harvey P. Dale, Sep 27 2016 *)
-
a(n)=n*(5*n^3+10*n^2+7*n+2)/24 \\ Charles R Greathouse IV, Dec 13 2011, corrected by Altug Alkan, Aug 15 2017
-
[n*(n+1)*(5*n^2 +5*n +2)/24 for n in (1..40)] # G. C. Greubel, Sep 02 2019
A241619
T(n,k)=Number of length n+2 0..k arrays with no consecutive three elements summing to more than k.
Original entry on oeis.org
4, 10, 6, 20, 20, 9, 35, 50, 40, 13, 56, 105, 125, 76, 19, 84, 196, 315, 295, 147, 28, 120, 336, 686, 889, 711, 287, 41, 165, 540, 1344, 2254, 2567, 1730, 556, 60, 220, 825, 2430, 5040, 7586, 7483, 4175, 1077, 88, 286, 1210, 4125, 10242, 19374, 25774, 21631, 10077
Offset: 1
Some solutions for n=5 k=4
..1....0....2....1....0....2....0....1....0....0....0....2....1....0....1....2
..0....0....1....3....0....0....4....2....1....0....1....1....3....0....0....1
..0....3....0....0....0....1....0....1....3....0....0....0....0....2....1....0
..0....0....0....1....2....0....0....0....0....0....1....0....1....1....1....2
..2....0....3....0....0....2....0....0....0....0....2....1....0....0....0....0
..0....1....0....1....2....1....2....0....1....0....0....1....1....0....3....1
..0....0....0....1....0....0....2....4....2....2....0....0....2....0....0....0
-
for m from 1 to 12 do
r:= [seq(seq([i,j],j=0..m-i),i=0..m)];
T[m]:= Matrix((m+1)*(m+2)/2,(m+1)*(m+2)/2, proc(i, j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=m then 1 else 0 fi end proc):
U[m,0]:= Vector((m+1)*(m+2)/2,1);
od:
R:= NULL:
for i from 2 to 12 do
for j from 1 to i-1 do
U[i-j,j]:= T[i-j] . U[i-j,j-1];
R:= R, convert(U[i-j,j],`+`)
od od:
R; # Robert Israel, Sep 04 2019
A143945
Wiener index of the grid P_n x P_n, where P_n is the path graph on n vertices.
Original entry on oeis.org
0, 8, 72, 320, 1000, 2520, 5488, 10752, 19440, 33000, 53240, 82368, 123032, 178360, 252000, 348160, 471648, 627912, 823080, 1064000, 1358280, 1714328, 2141392, 2649600, 3250000, 3954600, 4776408, 5729472, 6828920, 8091000, 9533120, 11173888, 13033152, 15132040
Offset: 1
a(2)=8 because in P_2 x P_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2 (4*1 + 2*2 = 8).
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000 (corrected by Ray Chandler, Jan 19 2019)
- Dragan Stevanovic, Hosoya polynomial of composite graphs, Discrete Math., Vol. 235, No. 1-3 (2001), pp. 237-244.
- B.-Y. Yang and Y.-N. Yeh, Wiener polynomials of some chemically interesting graphs, International Journal of Quantum Chemistry, Vol. 99 (2004), pp. 80-91.
- Y.-N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math., Vol. 135, No. 1-3 (1994), pp. 359-365.
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[n^3*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Feb 08 2014
-
seq((1/3)*n^3*(n^2-1),n=1..33);
-
Table[n^3 (n^2 - 1)/3, {n, 40}] (* Harvey P. Dale, Feb 07 2014 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 72, 320, 1000, 2520}, 30] (* Harvey P. Dale, Feb 07 2014 *)
CoefficientList[Series[8 x (1 + 3 x + x^2)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
-
a(n)=n^3*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 21 2022
A119308
Triangle for first differences of Catalan numbers.
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125
Offset: 0
Triangle begins:
1;
2, 1;
3, 5, 1;
4, 14, 9, 1;
5, 30, 40, 14, 1;
6, 55, 125, 90, 20, 1;
7, 91, 315, 385, 175, 27, 1;
8, 140, 686, 1274, 980, 308, 35, 1;
9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
-
a[k_,j_]:=If[k<=j,Binomial[j+1,2(j-k)]*CatalanNumber[j-k],0];
Flatten[Table[Sum[Binomial[n,j]*a[k,j],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
-
catalan(n)=binomial(2*n,n)/(n+1);
a(k,j)=if (k<=j,binomial(j+1,2*(j-k))*catalan(j-k),0);
tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n,j)*a(k,j)),", "););print(););};
tabl(10); \\ Indranil Ghosh, Mar 03 2017
A006415
Number of nonseparable toroidal tree-rooted maps with n + 3 edges and n + 1 vertices.
Original entry on oeis.org
4, 104, 1020, 6092, 26670, 94128, 283338, 754380, 1821534, 4061200
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A006441
Number of nonseparable toroidal tree-rooted maps with n + 4 edges and n + 1 vertices.
Original entry on oeis.org
10, 595, 11010, 111650, 773640, 4104225, 17838730, 66390610, 218140650
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A071910
a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.
Original entry on oeis.org
0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0
Cf.
A006542, (first differences of a(n) /18)
A006414, (second differences of a(n) /18)
A006322, (third differences of a(n) /18)
A004068, (fourth differences of a(n) /18)
A005891, (fifth differences of a(n) /18)
A008706.
-
Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
-
t(n) = n*(n+1)/2;
a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015
A107984
Triangle read by rows: T(n,k) = (k+1)*(n+2)*(2n-k+3)*(n-k+1)/6 for 0 <= k <= n.
Original entry on oeis.org
1, 5, 4, 14, 16, 10, 30, 40, 35, 20, 55, 80, 81, 64, 35, 91, 140, 154, 140, 105, 56, 140, 224, 260, 256, 220, 160, 84, 204, 336, 405, 420, 390, 324, 231, 120, 285, 480, 595, 640, 625, 560, 455, 320, 165, 385, 660, 836, 924, 935, 880, 770, 616, 429, 220, 506, 880
Offset: 0
Triangle begins:
1;
5, 4;
14, 16, 10;
30, 40, 35, 20;
-
T:=proc(n,k) if k<=n then (k+1)*(n+2)*(2*n-k+3)*(n-k+1)/6 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
A107984_row(n)=vector(n+1,k,k*(2*n-k+4)*(n-k+2))*(n+2)/6 \\ M. F. Hasler, Dec 26 2016
A107972
Triangle read by rows: T(n,k) = (k+1)(k+2)(n+2)(3n-2k+3)/12 for 0<=k<=n.
Original entry on oeis.org
1, 3, 6, 6, 14, 20, 10, 25, 40, 50, 15, 39, 66, 90, 105, 21, 56, 98, 140, 175, 196, 28, 76, 136, 200, 260, 308, 336, 36, 99, 180, 270, 360, 441, 504, 540, 45, 125, 230, 350, 475, 595, 700, 780, 825, 55, 154, 286, 440, 605, 770, 924, 1056, 1155, 1210, 66, 186, 348
Offset: 0
Triangle begins:
1;
3,6;
6,14,20;
10,25,40,50;
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237; K{B(n,2,l)}).
-
T:=proc(n,k) if k<=n then (k+1)*(k+2)*(n+2)*(3*n-2*k+3)/12 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
Showing 1-10 of 13 results.
Comments