cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A006542 a(n) = binomial(n,3)*binomial(n-1,3)/4.

Original entry on oeis.org

1, 10, 50, 175, 490, 1176, 2520, 4950, 9075, 15730, 26026, 41405, 63700, 95200, 138720, 197676, 276165, 379050, 512050, 681835, 896126, 1163800, 1495000, 1901250, 2395575, 2992626, 3708810, 4562425, 5573800, 6765440, 8162176, 9791320, 11682825, 13869450
Offset: 4

Views

Author

Keywords

Comments

Number of permutations of n+4 that avoid the pattern 132 and have exactly 3 descents. - Mike Zabrocki, Aug 26 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 20 2005
a(n) = number of Dyck n-paths with exactly 4 peaks. - David Callan, Jul 03 2006
Six-dimensional figurate numbers for a hyperpyramid with pentagonal base. This corresponds to the sum(sum(sum(sum(1+sum(5*n))))) interpretation, see the Munafo webpage. - Robert Munafo, Jun 18 2009

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 166, no. 1).
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 238.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937.
Fourth column of the table of Narayana numbers A001263.
Apart from a scale factor, a column of A124428.

Programs

  • GAP
    List([4..40], n-> n*(n-1)^2*(n-2)^2*(n-3)/144); # G. C. Greubel, Feb 24 2019
  • Magma
    [ n*((n-1)*(n-2))^2*(n-3)/144 : n in [4..40] ]; // Wesley Ivan Hurt, Jun 17 2014
    
  • Maple
    A006542:=-(1+3*z+z**2)/(z-1)**7; # conjectured by Simon Plouffe in his 1992 dissertation
    A006542:=n->n*((n-1)*(n-2))^2*(n-3)/144; seq(A006542(n), n=4..40); # Wesley Ivan Hurt, Jun 17 2014
  • Mathematica
    Table[Binomial[n, 3]*Binomial[n-1, 3]/4, {n, 4, 40}]
  • PARI
    a(n)=n*((n-1)*(n-2))^2*(n-3)/144
    
  • Sage
    [n*(n-1)^2*(n-2)^2*(n-3)/144 for n in (4..40)] # G. C. Greubel, Feb 24 2019
    

Formula

a(n) = C(n, 3)*C(n-1, 3)/4 = n*(n-1)^2*(n-2)^2*(n-3)/144.
a(n) = A000292(n-3)*A000292(n-2)/4.
E.g.f.: x^4*(6 + 6*x + x^2)*exp(x)/144. - Vladeta Jovovic, Jan 29 2003
a(n) = Sum(Sum(Sum(Sum(1 + Sum(5*n))))) = Sum (A006414). - Xavier Acloque, Oct 08 2003
a(n) = C(n, 6) + 3*C(n+1, 6) + C(n+2, 6). - Mike Zabrocki, Aug 26 2004
G.f.: x^4*(1 + 3*x + x^2)/(1-x)^7. - Emeric Deutsch, Jun 20 2005
a(n) = C(n-2, n-4)*C(n-1, n-3)*C(n, n-2)/18. - Zerinvary Lajos, Jul 29 2005
a(n) = C(n,4)*C(n,3)/n. - Mitch Harris, Jul 06 2006
a(n+2) = (1/4)*Sum_{1 <= x_1, x_2 <= n} x_1*x_2*(det V(x_1,x_2))^2 = (1/4)*Sum_{1 <= i,j <= n} i*j*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = C(n-1,3)^2 - C(n-1,2)*C(n-1,4). - Gary Detlefs, Dec 05 2011
a(n) = A000292(A000217(n-1)) - A000217(A000292(n-1)). - Ivan N. Ianakiev, Jun 17 2014
a(n) = Product_{i=1..3} A002378(n-4+i)/A002378(i). - Bruno Berselli, Nov 12 2014 (Rewritten, Sep 01 2016.)
Sum_{n>=4} 1/a(n) = 238 - 24*Pi^2. - Jaume Oliver Lafont, Jul 10 2017
Sum_{n>=4} (-1)^n/a(n) = 134 - 192*log(2). - Amiram Eldar, Oct 19 2020
a(n) = A000332(n) + 5*A000579(n+1). - Yasser Arath Chavez Reyes, Aug 18 2024

Extensions

Zabroki and Lajos formulas offset corrected by Gary Detlefs, Dec 05 2011

A006322 4-dimensional analog of centered polygonal numbers.

Original entry on oeis.org

1, 8, 31, 85, 190, 371, 658, 1086, 1695, 2530, 3641, 5083, 6916, 9205, 12020, 15436, 19533, 24396, 30115, 36785, 44506, 53383, 63526, 75050, 88075, 102726, 119133, 137431, 157760, 180265, 205096, 232408, 262361, 295120, 330855, 369741, 411958, 457691, 507130
Offset: 1

Views

Author

Albert Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
Partial sums give A006414. - L. Edson Jeffery, Dec 13 2011
Also the number of (w,x,y,z) with all terms in {1,...,n} and w<=x>=y<=z, see A211795. - Clark Kimberling, May 19 2012

Examples

			An illustration for a(5)=190: 5*(1+2+3+4+5)+4*(2+3+4+5)+3*(3+4+5)+2*(4+5)+1*(5) gives 75+56+36+18+5=190. - _J. M. Bergot_, Feb 13 2018
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/4).

Crossrefs

Programs

  • GAP
    List([1..40], n->5*Binomial(n+2,4) + Binomial(n+1,2)); # Muniru A Asiru, Feb 13 2018
    
  • Magma
    [n*(n+1)*(5*n^2 +5*n +2)/24: n in [1..40]]; // G. C. Greubel, Sep 02 2019
    
  • Maple
    a:=n->5*binomial(n+2,4) + binomial(n+1,2): seq(a(n), n=1..40); # Muniru A Asiru, Feb 13 2018
  • Mathematica
    Table[5*Binomial[n+2, 4] + Binomial[n+1, 2], {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    CoefficientList[Series[(1+3x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,8,31,85,190},40] (* Harvey P. Dale, Sep 27 2016 *)
  • PARI
    a(n)=n*(5*n^3+10*n^2+7*n+2)/24 \\ Charles R Greathouse IV, Dec 13 2011, corrected by Altug Alkan, Aug 15 2017
    
  • Sage
    [n*(n+1)*(5*n^2 +5*n +2)/24 for n in (1..40)] # G. C. Greubel, Sep 02 2019

Formula

a(n) = 5*C(n+2,4) + C(n+1,2) = (C(5*n+4,4) - 1)/5^3 = n*(n+1)*(5*n^2 + 5*n + 2)/24.
a(n) = (((n+1)^5-n^5) - ((n+1)^3-n^3))/24. - Xavier Acloque, Jan 14 2003, corrected by Eric Rowland, Aug 15 2017
Partial sums of A004068. - Xavier Acloque, Jan 15 2003
G.f.: x*(1+3*x+x^2)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = Sum_{i=1..n} Sum_{j=1..n} i * min(i,j). - Enrique Pérez Herrero, Jan 30 2013
a(n) = A000537(n) - A000332(n+2). - J. M. Bergot, Jun 03 2017
Sum_{n>=1} 1/a(n) = 42 - 4*sqrt(15)*Pi*tanh(sqrt(3/5)*Pi/2). - Amiram Eldar, May 28 2022
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: exp(x)*x*(2 + x)*(12 + 30*x + 5*x^2)/24.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)

A241619 T(n,k)=Number of length n+2 0..k arrays with no consecutive three elements summing to more than k.

Original entry on oeis.org

4, 10, 6, 20, 20, 9, 35, 50, 40, 13, 56, 105, 125, 76, 19, 84, 196, 315, 295, 147, 28, 120, 336, 686, 889, 711, 287, 41, 165, 540, 1344, 2254, 2567, 1730, 556, 60, 220, 825, 2430, 5040, 7586, 7483, 4175, 1077, 88, 286, 1210, 4125, 10242, 19374, 25774, 21631, 10077
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Table starts
...4...10....20.....35......56.......84......120.......165.......220........286
...6...20....50....105.....196......336......540.......825......1210.......1716
...9...40...125....315.....686.....1344.....2430......4125......6655......10296
..13...76...295....889....2254.....5040....10242.....19305.....34243......57772
..19..147...711...2567....7586....19374....44274.....92697....180829.....332761
..28..287..1730...7483...25774....75180...193194....449295....963886....1934647
..41..556..4175..21631...86828...289248...835812...2159025...5093737...11151140
..60.1077.10077..62547..292621..1113348..3617703..10380183..26932543...64309245
..88.2091.24377.181255..988303..4294574.15692003..50011289.142701909..371651553
.129.4057.58928.524877.3335451.16553380.68014233.240772037.755538278.2146210209

Examples

			Some solutions for n=5 k=4
..1....0....2....1....0....2....0....1....0....0....0....2....1....0....1....2
..0....0....1....3....0....0....4....2....1....0....1....1....3....0....0....1
..0....3....0....0....0....1....0....1....3....0....0....0....0....2....1....0
..0....0....0....1....2....0....0....0....0....0....1....0....1....1....1....2
..2....0....3....0....0....2....0....0....0....0....2....1....0....0....0....0
..0....1....0....1....2....1....2....0....1....0....0....1....1....0....3....1
..0....0....0....1....0....0....2....4....2....2....0....0....2....0....0....0
		

Crossrefs

Column 1 is A000930(n+4)
Row 1 is A000292(n+1)
Row 2 is A002415(n+2)
Row 3 is A006414
Row 4 is A114244

Programs

  • Maple
    for m from 1 to 12 do
      r:= [seq(seq([i,j],j=0..m-i),i=0..m)];
      T[m]:= Matrix((m+1)*(m+2)/2,(m+1)*(m+2)/2, proc(i, j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=m then 1 else 0 fi end proc):
      U[m,0]:= Vector((m+1)*(m+2)/2,1);
    od:
    R:= NULL:
    for i from 2 to 12 do
      for j from 1 to i-1 do
        U[i-j,j]:= T[i-j] . U[i-j,j-1];
        R:= R, convert(U[i-j,j],`+`)
    od od:
    R; # Robert Israel, Sep 04 2019

Formula

Empirical for column k, apparently a recurrence of order (k+1)*(k+2)/2:
k=1: a(n) = a(n-1) +a(n-3)
k=2: a(n) = a(n-1) +a(n-2) +2*a(n-3) -a(n-5) -a(n-6)
k=3: a(n) = 2*a(n-1) +4*a(n-3) -3*a(n-4) -a(n-5) -3*a(n-6) +2*a(n-7) +a(n-9) -a(n-10)
k=4: [order 15]
k=5: [order 21]
k=6: [order 28]
k=7: [order 36]
k=8: [order 45]
k=9: [order 55]
k=10: [order 66]
k=11: [order 78]
k=12: [order 91]
Empirical for row n, apparently a polynomial of degree n+2:
n=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1
n=2: a(n) = (1/12)*n^4 + (2/3)*n^3 + (23/12)*n^2 + (7/3)*n + 1
n=3: a(n) = (1/24)*n^5 + (5/12)*n^4 + (13/8)*n^3 + (37/12)*n^2 + (17/6)*n + 1
n=4: [polynomial of degree 6]
n=5: [polynomial of degree 7]
n=6: [polynomial of degree 8]
n=7: [polynomial of degree 9]
From Robert Israel, Sep 04 2019: (Start)
Column k satisfies a recurrence of order (k+1)*(k+2)/2, since a(n)=e^T T^n e where T is a (k+1)*(k+2)/2 matrix and e the vector of all 1's (see proofs at A241615 and A241618).
Row n is the Ehrhart polynomial of degree n+2 corresponding to the polytope {(x(1),...,x(n+2)): all x(i)>=0, x(i)+x(i+1)+x(i+2)<=1 for i=1..n}, whose vertices have all entries in {0,1}. (End)

A143945 Wiener index of the grid P_n x P_n, where P_n is the path graph on n vertices.

Original entry on oeis.org

0, 8, 72, 320, 1000, 2520, 5488, 10752, 19440, 33000, 53240, 82368, 123032, 178360, 252000, 348160, 471648, 627912, 823080, 1064000, 1358280, 1714328, 2141392, 2649600, 3250000, 3954600, 4776408, 5729472, 6828920, 8091000, 9533120, 11173888, 13033152, 15132040
Offset: 1

Views

Author

Emeric Deutsch, Sep 20 2008

Keywords

Comments

The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.

Examples

			a(2)=8 because in P_2 x P_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2 (4*1 + 2*2 = 8).
		

Crossrefs

Main diagonal of A143368.

Programs

  • Magma
    [n^3*(n^2-1)/3: n in [1..40]]; // Vincenzo Librandi, Feb 08 2014
    
  • Maple
    seq((1/3)*n^3*(n^2-1),n=1..33);
  • Mathematica
    Table[n^3 (n^2 - 1)/3, {n, 40}] (* Harvey P. Dale, Feb 07 2014 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 72, 320, 1000, 2520}, 30] (* Harvey P. Dale, Feb 07 2014 *)
    CoefficientList[Series[8 x (1 + 3 x + x^2)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    a(n)=n^3*(n^2-1)/3 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n) = Sum_{k=1..2n-2} k*A143944(n,k).
a(n) = n^3*(n^2-1)/3.
a(n) = 8*A006414(n-2). G.f.: 8*x^2*(1+3*x+x^2)/(x-1)^6. - R. J. Mathar, Sep 15 2010
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), a(2)=8, a(3)=72, a(4)=320, a(5)=1000, a(6)=2520, a(7)=5488. - Harvey P. Dale, Feb 07 2014
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=2} 1/a(n) = 15/4 - 3*zeta(3).
Sum_{n>=2} (-1)^n/a(n) = 9*zeta(3)/4 + 6*log(2) - 27/4. (End)

A119308 Triangle for first differences of Catalan numbers.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125
Offset: 0

Views

Author

Paul Barry, May 13 2006

Keywords

Comments

Row sums are A000245(n+1). Columns include A000330, A006414, as well as certain Kekulé numbers (A114242, A108647, ...).
Diagonal sums are A188460.
Coefficient array of the second column of the inverse of the Riordan array ((1+r*x)/(1+(r+1)x+r*x^2), x/(1+(r+1)x+r*x^2)). - Paul Barry, Apr 01 2011

Examples

			Triangle begins:
1;
2,   1;
3,   5,    1;
4,  14,    9,    1;
5,  30,   40,   14,    1;
6,  55,  125,   90,   20,    1;
7,  91,  315,  385,  175,   27,   1;
8, 140,  686, 1274,  980,  308,  35,  1;
9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
		

Crossrefs

Programs

  • Mathematica
    a[k_,j_]:=If[k<=j,Binomial[j+1,2(j-k)]*CatalanNumber[j-k],0];
    Flatten[Table[Sum[Binomial[n,j]*a[k,j],{j,0,n}],{n,0,10},{k,0,n}]] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    catalan(n)=binomial(2*n,n)/(n+1);
    a(k,j)=if (k<=j,binomial(j+1,2*(j-k))*catalan(j-k),0);
    tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n,j)*a(k,j)),", "););print(););};
    tabl(10); \\ Indranil Ghosh, Mar 03 2017

Formula

T(n,k) = Sum_{j=0..n} C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1).
Column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1)).
T(n,k) = Sum_{j=0..n} C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k), 0).
G.f.: (((x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+(-x^2-x)*y+x^2-2*x+1)/(2*x^3*y^2)). - Vladimir Kruchinin, Nov 15 2020
T(n,k) = C(n+1,k)*(2*C(n+1,k+2)+C(n+1,k+1))/(n+1). - Vladimir Kruchinin, Nov 16 2020

A006415 Number of nonseparable toroidal tree-rooted maps with n + 3 edges and n + 1 vertices.

Original entry on oeis.org

4, 104, 1020, 6092, 26670, 94128, 283338, 754380, 1821534, 4061200
Offset: 0

Views

Author

Keywords

Comments

The number of faces is 2. - Andrew Howroyd, Apr 05 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Conjecture: a(n) = 4 * binomial(n + 4, n) + 84 * binomial(n + 4, n - 1) + 456 * binomial(n + 4, n - 2) + 996 * binomial(n + 4, n - 3) + 950 * binomial(n + 4, n - 4) + 330 * binomial(n + 5, n - 5). - Sean A. Irvine, Apr 03 2017

A006441 Number of nonseparable toroidal tree-rooted maps with n + 4 edges and n + 1 vertices.

Original entry on oeis.org

10, 595, 11010, 111650, 773640, 4104225, 17838730, 66390610, 218140650
Offset: 0

Views

Author

Keywords

Comments

The number of faces is 3. - Andrew Howroyd, Apr 05 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Name clarified by Andrew Howroyd, Apr 05 2021

A071910 a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.

Original entry on oeis.org

0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2002

Keywords

Comments

a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the two-dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020

Crossrefs

Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.

Programs

  • Mathematica
    Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015

Formula

a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)*(n+2))^3/8 - Sum_{i=1..n+1} i^3. - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n). - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015

A107984 Triangle read by rows: T(n,k) = (k+1)*(n+2)*(2n-k+3)*(n-k+1)/6 for 0 <= k <= n.

Original entry on oeis.org

1, 5, 4, 14, 16, 10, 30, 40, 35, 20, 55, 80, 81, 64, 35, 91, 140, 154, 140, 105, 56, 140, 224, 260, 256, 220, 160, 84, 204, 336, 405, 420, 390, 324, 231, 120, 285, 480, 595, 640, 625, 560, 455, 320, 165, 385, 660, 836, 924, 935, 880, 770, 616, 429, 220, 506, 880
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields A000330. Main diagonal yields A000292. Row sums yield A006414.

Examples

			Triangle begins:
   1;
   5,  4;
  14, 16, 10;
  30, 40, 35, 20;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then (k+1)*(n+2)*(2*n-k+3)*(n-k+1)/6 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • PARI
    A107984_row(n)=vector(n+1,k,k*(2*n-k+4)*(n-k+2))*(n+2)/6 \\ M. F. Hasler, Dec 26 2016

Formula

T(n-2,k-1) = n*(2*n-k)*(n-k)*k/6. - M. F. Hasler, Dec 26 2016
G.f.: (1 + x - 4*x^2*y + x^3*y^2 + x^4*y^2)/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Jul 11 2025

A107972 Triangle read by rows: T(n,k) = (k+1)(k+2)(n+2)(3n-2k+3)/12 for 0<=k<=n.

Original entry on oeis.org

1, 3, 6, 6, 14, 20, 10, 25, 40, 50, 15, 39, 66, 90, 105, 21, 56, 98, 140, 175, 196, 28, 76, 136, 200, 260, 308, 336, 36, 99, 180, 270, 360, 441, 504, 540, 45, 125, 230, 350, 475, 595, 700, 780, 825, 55, 154, 286, 440, 605, 770, 924, 1056, 1155, 1210, 66, 186, 348
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids. Column 0 yields the triangular numbers (A000217). Row sums yield A006414. T(n,n) = A002415(n+2).

Examples

			Triangle begins:
1;
3,6;
6,14,20;
10,25,40,50;
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237; K{B(n,2,l)}).

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k<=n then (k+1)*(k+2)*(n+2)*(3*n-2*k+3)/12 else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
Showing 1-10 of 13 results. Next