cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A241615 Number of length n+2 0..9 arrays with no consecutive three elements summing to more than 9.

Original entry on oeis.org

220, 1210, 6655, 34243, 180829, 963886, 5093737, 26932543, 142701909, 755538278, 3999038946, 21172904049, 112098384491, 593455432350, 3141868198978, 16633824615067, 88062718713584, 466221475528171, 2468274573927916
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 9 of A241619

Examples

			Some solutions for n=5
..0....1....0....1....1....7....5....5....1....0....0....1....1....1....1....0
..5....2....1....2....1....0....1....1....3....1....1....2....2....0....7....1
..2....1....3....1....2....0....0....3....1....2....2....4....1....0....1....7
..0....3....1....5....0....4....1....2....2....5....3....3....1....0....0....0
..3....1....0....0....0....0....3....0....4....0....2....0....5....1....4....1
..2....4....8....1....1....3....0....4....0....1....2....3....1....8....1....3
..3....1....1....1....2....3....6....5....4....2....4....4....0....0....2....4
		

Programs

  • Maple
    r:= [seq(seq([i,j],j=0..9-i),i=0..9)]:
    T:= Matrix(55,55,proc(i,j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=9 then 1 else 0 fi end proc):
    U[0]:= Vector(55,1):
    for n from 1 to 50 do U[n]:= T . U[n-1] od:
    seq(U[0]^%T . U[j], j=1..50); # Robert Israel, Sep 03 2019

Formula

Empirical: a(n) = 4*a(n-1) +2*a(n-2) +44*a(n-3) -69*a(n-4) -79*a(n-5) -507*a(n-6) +572*a(n-7) +514*a(n-8) +2973*a(n-9) -3097*a(n-10) -1820*a(n-11) -10364*a(n-12) +10800*a(n-13) +4269*a(n-14) +25019*a(n-15) -25821*a(n-16) -6914*a(n-17) -44207*a(n-18) +44275*a(n-19) +8829*a(n-20) +59359*a(n-21) -57787*a(n-22) -9308*a(n-23) -62456*a(n-24) +58989*a(n-25) +8291*a(n-26) +52174*a(n-27) -48385*a(n-28) -5846*a(n-29) -35493*a(n-30) +32403*a(n-31) +3452*a(n-32) +19719*a(n-33) -17810*a(n-34) -1563*a(n-35) -9053*a(n-36) +8178*a(n-37) +608*a(n-38) +3390*a(n-39) -3025*a(n-40) -167*a(n-41) -1072*a(n-42) +973*a(n-43) +42*a(n-44) +259*a(n-45) -227*a(n-46) -6*a(n-47) -56*a(n-48) +52*a(n-49) +a(n-50) +7*a(n-51) -6*a(n-52) -a(n-54) +a(n-55).
Empirical formula verified: see link. - Robert Israel, Sep 03 2019

A241618 Number of length n+2 0..12 arrays with no consecutive three elements summing to more than 12.

Original entry on oeis.org

455, 3185, 22295, 145873, 980031, 6645821, 44678543, 300535053, 2025793471, 13644835113, 91879275469, 618858084619, 4168290681519, 28073432645895, 189079333842687, 1273493381875147, 8577194140275861, 57768891197339641
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 12 of A241619

Examples

			Some solutions for n=5
..0....3....0....0....0....3....3....3....0....3....3....3....0....3....0....0
..6....3....0....0....0....3....0....0....3....3....0....6....0....3....3....9
..0....0....0....2...11....3....8....2....6....4....5....1....7....1....0....0
..3....0....6....8....0....0....2....0....1....4....0....0....5....1....0....1
..2....1....1....0....1....3....2....4....4....1....7....1....0....0....7....7
..2....2....4....1....1....7....3....3....4....1....0....1....5....7....0....1
..4....4....0....9....7....0....0....0....0...10....1....5....0....5....3....0
		

Programs

  • Maple
    r:= [seq(seq([i,j],j=0..12-i),i=0..12)]:
    T:= Matrix(91,91,proc(i,j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=12 then 1 else 0 fi end proc):
    U[0]:= Vector(91,1):
    for n from 1 to 40 do U[n]:= T . U[n-1] od:
    seq(U[0]^%T . U[j], j=1..40); # Robert Israel, Sep 03 2019

Formula

Empirical recurrence of order 91 (see link above).
Empirical formula verified (see link). - Robert Israel, Sep 03 2019

A241608 Number of length n+2 0..2 arrays with no consecutive three elements summing to more than 2.

Original entry on oeis.org

10, 20, 40, 76, 147, 287, 556, 1077, 2091, 4057, 7868, 15264, 29613, 57445, 111438, 216184, 419380, 813563, 1578253, 3061693, 5939450, 11522085, 22351978, 43361147, 84117349, 163181309, 316559417, 614101361, 1191310271, 2311051970, 4483266305
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Examples

			Some solutions for n=5:
..1....0....2....0....1....2....2....1....0....1....1....0....1....1....1....0
..0....1....0....0....0....0....0....1....1....0....0....0....0....0....0....1
..1....0....0....0....1....0....0....0....0....1....1....0....1....0....0....0
..0....0....0....0....0....0....0....1....1....1....0....1....1....1....0....0
..0....2....0....0....0....1....0....1....1....0....0....0....0....0....1....0
..1....0....1....0....1....0....1....0....0....1....2....0....1....1....1....0
..1....0....0....2....0....0....1....0....0....0....0....2....1....0....0....0
		

Crossrefs

Column 2 of A241619.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + 2*a(n-3) - a(n-5) - a(n-6).
Empirical g.f.: x*(10 + 10*x + 10*x^2 - 4*x^3 - 9*x^4 - 6*x^5) / (1 - x - x^2 - 2*x^3 + x^5 + x^6). - Colin Barker, Oct 30 2018

A241609 Number of length n+2 0..3 arrays with no consecutive three elements summing to more than 3.

Original entry on oeis.org

20, 50, 125, 295, 711, 1730, 4175, 10077, 24377, 58928, 142396, 344201, 832011, 2010980, 4860690, 11748840, 28397936, 68640170, 165909570, 401018224, 969296175, 2342874854, 5662936565, 13687818660, 33084669767, 79968578621
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Examples

			Some solutions for n=5:
..1....2....3....2....1....0....3....0....1....1....1....1....1....3....2....0
..0....1....0....1....2....1....0....0....1....1....0....1....1....0....0....1
..1....0....0....0....0....2....0....0....0....0....1....0....1....0....0....1
..0....0....1....0....0....0....1....0....1....2....2....0....1....2....3....1
..0....0....2....1....1....1....1....0....1....1....0....1....0....1....0....0
..0....2....0....2....2....1....1....0....0....0....0....0....1....0....0....0
..3....1....1....0....0....1....0....1....1....2....0....0....1....2....1....3
		

Crossrefs

Column 3 of A241619.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-3) - 3*a(n-4) - a(n-5) - 3*a(n-6) + 2*a(n-7) + a(n-9) - a(n-10).
Empirical g.f.: x*(20 + 10*x + 25*x^2 - 35*x^3 - 19*x^4 - 22*x^5 + 20*x^6 + 3*x^7 + 6*x^8 - 10*x^9) / ((1 - x)*(1 - x - x^2 - 5*x^3 - 2*x^4 - x^5 + 2*x^6 - x^9)). - Colin Barker, Oct 30 2018

A241610 Number of length n+2 0..4 arrays with no consecutive three elements summing to more than 4.

Original entry on oeis.org

35, 105, 315, 889, 2567, 7483, 21631, 62547, 181255, 524877, 1519408, 4399720, 12740155, 36888358, 106810847, 309276700, 895517750, 2592992001, 7508089778, 21739889599, 62948442860, 182269006155, 527765093824, 1528158677522
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 4 of A241619

Examples

			Some solutions for n=5
..1....0....2....0....3....2....2....0....2....4....0....1....0....0....0....3
..0....0....0....0....0....2....0....0....0....0....0....2....0....1....2....0
..0....0....1....1....1....0....1....1....0....0....3....0....3....0....0....0
..2....1....2....2....2....0....0....1....0....1....1....1....0....0....1....2
..0....0....0....1....0....0....3....0....0....1....0....1....1....0....3....0
..2....0....0....0....0....0....0....2....0....1....0....2....1....0....0....0
..2....3....4....3....3....3....0....1....3....1....0....0....2....3....1....1
		

Formula

Empirical: a(n) = 2*a(n-1) +a(n-2) +7*a(n-3) -4*a(n-4) -5*a(n-5) -12*a(n-6) +4*a(n-7) +3*a(n-8) +9*a(n-9) -3*a(n-10) -a(n-11) -3*a(n-12) +a(n-13) +a(n-15)

A241611 Number of length n+2 0..5 arrays with no consecutive three elements summing to more than 5.

Original entry on oeis.org

56, 196, 686, 2254, 7586, 25774, 86828, 292621, 988303, 3335451, 11253229, 37977866, 128168421, 432512171, 1459576829, 4925618766, 16622258696, 56094381015, 189299674740, 638822175369, 2155807165360, 7275117316894
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 5 of A241619

Examples

			Some solutions for n=5
..2....1....3....0....0....2....1....0....1....0....2....4....0....1....1....2
..0....0....1....0....0....2....2....4....1....0....3....1....0....1....3....2
..1....4....0....1....1....1....2....0....1....3....0....0....0....2....0....1
..0....0....1....2....4....0....1....0....3....1....0....0....0....1....0....2
..0....0....0....2....0....1....2....3....0....0....5....1....0....0....2....1
..0....3....3....1....0....3....0....1....2....2....0....3....0....2....0....2
..2....0....1....2....1....0....1....1....3....2....0....0....4....3....3....2
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) +12*a(n-3) -4*a(n-4) -12*a(n-5) -36*a(n-6) +2*a(n-7) +16*a(n-8) +47*a(n-9) -4*a(n-10) -16*a(n-11) -33*a(n-12) +4*a(n-13) +10*a(n-14) +16*a(n-15) -a(n-16) -3*a(n-17) -4*a(n-18) +a(n-20) +a(n-21)

A241612 Number of length n+2 0..6 arrays with no consecutive three elements summing to more than 6.

Original entry on oeis.org

84, 336, 1344, 5040, 19374, 75180, 289248, 1113348, 4294574, 16553380, 63784786, 245853464, 947613919, 3652200016, 14076313291, 54253546534, 209104275023, 805930938847, 3106231773354, 11972077046301, 46142909963825
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 6 of A241619

Examples

			Some solutions for n=5
..0....3....0....3....4....1....2....3....4....1....3....4....2....4....0....2
..0....2....1....0....1....1....0....0....0....5....2....1....0....0....0....3
..1....1....3....0....1....4....1....1....2....0....1....0....2....1....3....0
..3....0....1....3....3....0....1....1....0....1....1....2....3....3....0....3
..0....1....0....0....0....0....0....3....0....1....2....0....1....1....2....2
..3....1....2....0....2....1....4....0....0....0....0....0....1....1....4....1
..2....2....4....0....4....3....0....0....3....4....0....1....1....3....0....3
		

Formula

Empirical: a(n) = 3*a(n-1) +a(n-2) +16*a(n-3) -20*a(n-4) -18*a(n-5) -65*a(n-6) +65*a(n-7) +41*a(n-8) +132*a(n-9) -130*a(n-10) -49*a(n-11) -144*a(n-12) +153*a(n-13) +31*a(n-14) +113*a(n-15) -115*a(n-16) -11*a(n-17) -60*a(n-18) +55*a(n-19) +4*a(n-20) +23*a(n-21) -21*a(n-22) -a(n-23) -5*a(n-24) +4*a(n-25) +a(n-27) -a(n-28)

A241613 Number of length n+2 0..7 arrays with no consecutive three elements summing to more than 7.

Original entry on oeis.org

120, 540, 2430, 10242, 44274, 193194, 835812, 3617703, 15692003, 68014233, 294705961, 1277336862, 5536267273, 23993714457, 103989408537, 450697682809, 1953337206374, 8465825120096, 36691243404754, 159021259038334
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Examples

			Some solutions for n=5:
..0....0....0....3....3....0....0....2....1....0....3....1....5....1....2....3
..5....2....4....0....0....0....1....0....2....6....1....0....0....0....1....0
..0....1....1....0....3....3....3....0....3....1....3....2....2....3....1....0
..0....1....0....1....2....4....2....0....1....0....0....3....2....4....3....1
..0....3....5....2....0....0....2....3....2....1....0....2....2....0....2....3
..2....0....0....0....3....0....1....2....2....4....1....0....1....2....1....0
..5....1....1....4....4....4....0....1....1....1....2....2....1....1....3....3
		

Crossrefs

Column 7 of A241619.

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2) +25*a(n-3) -23*a(n-4) -32*a(n-5) -160*a(n-6) +84*a(n-7) +98*a(n-8) +497*a(n-9) -235*a(n-10) -176*a(n-11) -895*a(n-12) +423*a(n-13) +219*a(n-14) +1112*a(n-15) -491*a(n-16) -173*a(n-17) -971*a(n-18) +376*a(n-19) +116*a(n-20) +624*a(n-21) -213*a(n-22) -61*a(n-23) -305*a(n-24) +82*a(n-25) +23*a(n-26) +107*a(n-27) -27*a(n-28) -5*a(n-29) -32*a(n-30) +5*a(n-31) +a(n-32) +5*a(n-33) -a(n-34) -a(n-36).

A241614 Number of length n+2 0..8 arrays with no consecutive three elements summing to more than 8.

Original entry on oeis.org

165, 825, 4125, 19305, 92697, 449295, 2159025, 10380183, 50011289, 240772037, 1158816022, 5578909654, 26858310661, 129293730680, 622425498913, 2996413264570, 14424866547232, 69441979827433, 334297722590641
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 8 of A241619

Examples

			Some solutions for n=5
..3....5....1....3....5....3....2....2....7....1....5....3....5....3....2....1
..1....2....2....5....1....3....4....2....0....3....0....3....1....0....3....1
..2....0....0....0....1....1....2....3....1....0....1....2....2....0....0....4
..0....2....1....2....0....0....2....1....2....1....6....0....4....2....2....3
..2....2....0....4....1....3....4....3....0....3....1....0....2....1....0....1
..0....3....0....0....2....1....0....0....3....3....0....4....0....4....5....3
..6....1....0....2....3....1....4....0....4....1....5....3....6....2....2....3
		

Formula

Empirical: a(n) = 3*a(n-1) +4*a(n-2) +34*a(n-3) -26*a(n-4) -80*a(n-5) -316*a(n-6) +112*a(n-7) +421*a(n-8) +1394*a(n-9) -393*a(n-10) -1321*a(n-11) -3584*a(n-12) +1018*a(n-13) +2738*a(n-14) +6358*a(n-15) -1691*a(n-16) -3941*a(n-17) -8170*a(n-18) +1818*a(n-19) +4171*a(n-20) +7970*a(n-21) -1452*a(n-22) -3430*a(n-23) -6029*a(n-24) +819*a(n-25) +2183*a(n-26) +3575*a(n-27) -366*a(n-28) -1074*a(n-29) -1671*a(n-30) +117*a(n-31) +438*a(n-32) +631*a(n-33) -34*a(n-34) -129*a(n-35) -177*a(n-36) +6*a(n-37) +36*a(n-38) +44*a(n-39) -a(n-40) -5*a(n-41) -6*a(n-42) +a(n-44) +a(n-45)

A241616 Number of length n+2 0..10 arrays with no consecutive three elements summing to more than 10.

Original entry on oeis.org

286, 1716, 10296, 57772, 332761, 1934647, 11151140, 64309245, 371651553, 2146210209, 12390321340, 71551367152, 413187460923, 2385868376437, 13777070958198, 79555740077836, 459390493737184, 2652727959027373
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Column 10 of A241619

Examples

			Some solutions for n=5
..1....1....1....0....0....1....0....1....0....1....1....1....0....0....1....0
..0....1....0....2....0....1....2....4....5....3....0....1....3....1....0....4
..2....6....5....2....8....5....2....2....0....6....7....3....5....6....3....3
..4....2....3....3....0....3....1....2....3....1....2....3....1....0....1....1
..0....1....2....0....1....2....3....0....2....3....1....1....2....3....1....0
..2....1....1....6....3....3....1....4....0....0....7....4....2....1....4....2
..7....3....6....4....5....3....0....2....6....0....1....1....6....4....0....6
		

Formula

Empirical: a(n) = 4*a(n-1) +4*a(n-2) +58*a(n-3) -78*a(n-4) -159*a(n-5) -909*a(n-6) +761*a(n-7) +1451*a(n-8) +7084*a(n-9) -5129*a(n-10) -7602*a(n-11) -33049*a(n-12) +23250*a(n-13) +26712*a(n-14) +107336*a(n-15) -72542*a(n-16) -66812*a(n-17) -258108*a(n-18) +162166*a(n-19) +126592*a(n-20) +479031*a(n-21) -276610*a(n-22) -189293*a(n-23) -706355*a(n-24) +371226*a(n-25) +228305*a(n-26) +843837*a(n-27) -403306*a(n-28) -222601*a(n-29) -830468*a(n-30) +361204*a(n-31) +179763*a(n-32) +682137*a(n-33) -270438*a(n-34) -119839*a(n-35) -471812*a(n-36) +170926*a(n-37) +67510*a(n-38) +276111*a(n-39) -91509*a(n-40) -31853*a(n-41) -138152*a(n-42) +41556*a(n-43) +12872*a(n-44) +58410*a(n-45) -16134*a(n-46) -4297*a(n-47) -21419*a(n-48) +5183*a(n-49) +1259*a(n-50) +6439*a(n-51) -1462*a(n-52) -282*a(n-53) -1735*a(n-54) +310*a(n-55) +59*a(n-56) +345*a(n-57) -63*a(n-58) -7*a(n-59) -68*a(n-60) +7*a(n-61) +a(n-62) +7*a(n-63) -a(n-64) -a(n-66)
Showing 1-10 of 14 results. Next