cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A241619 T(n,k)=Number of length n+2 0..k arrays with no consecutive three elements summing to more than k.

Original entry on oeis.org

4, 10, 6, 20, 20, 9, 35, 50, 40, 13, 56, 105, 125, 76, 19, 84, 196, 315, 295, 147, 28, 120, 336, 686, 889, 711, 287, 41, 165, 540, 1344, 2254, 2567, 1730, 556, 60, 220, 825, 2430, 5040, 7586, 7483, 4175, 1077, 88, 286, 1210, 4125, 10242, 19374, 25774, 21631, 10077
Offset: 1

Views

Author

R. H. Hardin, Apr 26 2014

Keywords

Comments

Table starts
...4...10....20.....35......56.......84......120.......165.......220........286
...6...20....50....105.....196......336......540.......825......1210.......1716
...9...40...125....315.....686.....1344.....2430......4125......6655......10296
..13...76...295....889....2254.....5040....10242.....19305.....34243......57772
..19..147...711...2567....7586....19374....44274.....92697....180829.....332761
..28..287..1730...7483...25774....75180...193194....449295....963886....1934647
..41..556..4175..21631...86828...289248...835812...2159025...5093737...11151140
..60.1077.10077..62547..292621..1113348..3617703..10380183..26932543...64309245
..88.2091.24377.181255..988303..4294574.15692003..50011289.142701909..371651553
.129.4057.58928.524877.3335451.16553380.68014233.240772037.755538278.2146210209

Examples

			Some solutions for n=5 k=4
..1....0....2....1....0....2....0....1....0....0....0....2....1....0....1....2
..0....0....1....3....0....0....4....2....1....0....1....1....3....0....0....1
..0....3....0....0....0....1....0....1....3....0....0....0....0....2....1....0
..0....0....0....1....2....0....0....0....0....0....1....0....1....1....1....2
..2....0....3....0....0....2....0....0....0....0....2....1....0....0....0....0
..0....1....0....1....2....1....2....0....1....0....0....1....1....0....3....1
..0....0....0....1....0....0....2....4....2....2....0....0....2....0....0....0
		

Crossrefs

Column 1 is A000930(n+4)
Row 1 is A000292(n+1)
Row 2 is A002415(n+2)
Row 3 is A006414
Row 4 is A114244

Programs

  • Maple
    for m from 1 to 12 do
      r:= [seq(seq([i,j],j=0..m-i),i=0..m)];
      T[m]:= Matrix((m+1)*(m+2)/2,(m+1)*(m+2)/2, proc(i, j) if r[i][1]=r[j][2] and r[i][1]+r[i][2]+r[j][1]<=m then 1 else 0 fi end proc):
      U[m,0]:= Vector((m+1)*(m+2)/2,1);
    od:
    R:= NULL:
    for i from 2 to 12 do
      for j from 1 to i-1 do
        U[i-j,j]:= T[i-j] . U[i-j,j-1];
        R:= R, convert(U[i-j,j],`+`)
    od od:
    R; # Robert Israel, Sep 04 2019

Formula

Empirical for column k, apparently a recurrence of order (k+1)*(k+2)/2:
k=1: a(n) = a(n-1) +a(n-3)
k=2: a(n) = a(n-1) +a(n-2) +2*a(n-3) -a(n-5) -a(n-6)
k=3: a(n) = 2*a(n-1) +4*a(n-3) -3*a(n-4) -a(n-5) -3*a(n-6) +2*a(n-7) +a(n-9) -a(n-10)
k=4: [order 15]
k=5: [order 21]
k=6: [order 28]
k=7: [order 36]
k=8: [order 45]
k=9: [order 55]
k=10: [order 66]
k=11: [order 78]
k=12: [order 91]
Empirical for row n, apparently a polynomial of degree n+2:
n=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1
n=2: a(n) = (1/12)*n^4 + (2/3)*n^3 + (23/12)*n^2 + (7/3)*n + 1
n=3: a(n) = (1/24)*n^5 + (5/12)*n^4 + (13/8)*n^3 + (37/12)*n^2 + (17/6)*n + 1
n=4: [polynomial of degree 6]
n=5: [polynomial of degree 7]
n=6: [polynomial of degree 8]
n=7: [polynomial of degree 9]
From Robert Israel, Sep 04 2019: (Start)
Column k satisfies a recurrence of order (k+1)*(k+2)/2, since a(n)=e^T T^n e where T is a (k+1)*(k+2)/2 matrix and e the vector of all 1's (see proofs at A241615 and A241618).
Row n is the Ehrhart polynomial of degree n+2 corresponding to the polytope {(x(1),...,x(n+2)): all x(i)>=0, x(i)+x(i+1)+x(i+2)<=1 for i=1..n}, whose vertices have all entries in {0,1}. (End)
Showing 1-1 of 1 results.