cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A211795 Number of (w,x,y,z) with all terms in {1,...,n} and w*x < 2*y*z.

Original entry on oeis.org

0, 1, 11, 58, 177, 437, 894, 1659, 2813, 4502, 6836, 10008, 14121, 19449, 26117, 34372, 44422, 56597, 71044, 88160, 108115, 131328, 158074, 188773, 223604, 263172, 307719, 357715, 413493, 475690, 544480, 620632, 704381, 796413
Offset: 0

Views

Author

Clark Kimberling, Apr 27 2012

Keywords

Comments

Each sequence in the following guide counts 4-tuples
(w,x,y,z) such that the indicated relation holds and the four numbers w,x,y,z are in {1,...,n}. The notation "m div" means that m divides every term of the sequence.
A211058 ... wx <= yz
A211787 ... wx <= 2yz
A211795 ... wx < 2yz
A211797 ... wx > 2yz
A211809 ... wx >= 2yz
A211812 ... wx <= 3yz
A211917 ... wx < 3yz
A211918 ... wx > 3yz
A211919 ... wx >= 3yz
A211920 ... 2wx < 3yz
A211921 ... 2wx <= 3yz
A211922 ... 2wx > 3yz
A211923 ... 2wx >= 3yz
A212019 ... wx = 2yz ..... 2 div
A212020 ... wx = 3yz ..... 2 div
A212021 ... 2wx = 3yz .... 2 div
A212047 ... wx = 4yz
A212048 ... 3wx = 4yz .... 2 div
A212049 ... wx = 5yz ..... 2 div
A212050 ... 2wx = 5yz .... 2 div
A212051 ... 3wx = 5yz .... 2 div
A212052 ... 4wx = 5yz .... 2 div
A209978 ... wx = yz + 1 .. 2 div
A212053 ... wx <= yz + 1
A212054 ... wx > yz + 1
A212055 ... wx <= yz + 2
A212056 ... wx > yz + 2
A197168 ... wx = yz + 2 .. 2 div
A061201 ... w = xyz
A212057 ... w < xyz
A212058 ... w >= xyz
A212059 ... w = xyz - 1
A212060 ... w = xyz - 2
A212061 ... wx = (yz)^2
A212062 ... w^2 = xyz
A212063 ... w^2 < xyz
A212064 ... w^2 >= xyz
A212065 ... w^2 <= xyz
A212066 ... w^2 > xyz
A212067 ... w^3 = xyz
A002623 ... w = 2x + y + z
A006918 ... w = 2x + 2y + z
A000601 ... w = x + 2y + 3z (except for initial 0's)
A212068 ... 2w = x + y + z
A212069 ... 3w = x + y + z (w = average{x,y,z})
A212088 ... 3w < x + y + z
A212089 ... 3w >= x + y + z
A212090 ... w < x + y + z
A000332 ... w >= x + y + z
A212145 ... w < 2x + y + z
A001752 ... w >= 2x + y + z
A001400 ... w = 2x +3y + 4z
A005900 ... w = -x + y + z
A192023 ... w = -x + y + z + 2
A212091 ... w^2 = x^2 + y^2 + z^2 ... 3 div
A212087 ... w^2 + x^2 = y^2 + z^2
A212092 ... w^2 < x^2 + y^2 + z^2
A212093 ... w^2 <= x^2 + y^2 + z^2
A212094 ... w^2 > x^2 + y^2 + z^2
A212095 ... w^2 >= x^2 + y^2 + z^2
A212096 ... w^3 = x^3 + y^3 + z^3 ... 6 div
A212097 ... w^3 < x^3 + y^3 + z^3
A212098 ... w^3 <= x^3 + y^3 + z^3
A212099 ... w^3 > x^3 + y^3 + z^3
A212100 ... w^3 >= x^3 + y^3 + z^3
A212101 ... wx^2 = yz^2
A212102 ... 1/w = 1/x + 1/y + 1/z
A212103 ... 3/w = 1/x + 1/y + 1/z; w = h.m. of {x,y,z}
A212104 ... 3/w >= 1/x + 1/y + 1/z; w >= h.m.
A212105 ... 3/w < 1/x + 1/y + 1/z; w < h.m.
A212106 ... 3/w > 1/x + 1/y + 1/z; w > h.m.
A212107 ... 3/w <= 1/x + 1/y + 1/z; w <= h.m.
A212133 ... median(w,x,y,z) = mean(w,x,y,z)
A212134 ... median(w,x,y,z) <= mean(w,x,y,z)
A212135 ... median(w,x,y,z) > mean(w,x,y,z)
A212241 ... wx + yz > n
A212243 ... 2wx + yz = n
A212244 ... w = xyz - n
A212245 ... w = xyz - 2n
A212246 ... 2w = x + y + z - n
A212247 ... 3w = x + y + z + n
A212249 ... 3w < x + y + z + n
A212250 ... 3w >= x + y + z + n
A212251 ... 3w = x + y + z + n + 1
A212252 ... 3w = x + y + z + n + 2
A212254 ... w = x + 2y + 3z - n
A212255 ... w^2 = mean(x^2, y^2, z^2)
A212256 ... 4/w = 1/x + 1/y +1/z + 1/n
In the list above, if the relation in the second column is of the form "w rel ax + by + cz" then the sequence is linearly recurrent. In the list below, the same is true for expressions involving more than one relation.
A000332 ... w < x <= y < z .... C(n,4)
A000914 ... w < x <= y < z .... Stirling 1st kind
A000914 ... w < x <= y >= z ... Stirling 1st kind
A050534 ... w < x < y >= z .... tritriangular
A001296 ... w <= x <= y >= z .. 4-dim pyramidal
A006322 ... x < x > y >= z
A002418 ... w < x >= y < z
A050534 ... w < x >=y >= z
A212415 ... w < x >= y <= z
A001296 ... w < x >= y <= z
A212246 ... w <= x > y <= z
A006322 ... w <= x >= y <= z
A212501 ... w > x < y >= z
A212503 ... w < 2x and y < 2z ..... A (note below)
A212504 ... w < 2x and y > 2z ..... A
A212505 ... w < 2x and y >= 2z .... A
A212506 ... w <= 2x and y <= 2z ... A
A212507 ... w < 2x and y <= 2z .... B
A212508 ... w < 2x and y < 3z ..... C
A212509 ... w < 2x and y <= 3z .... C
A212510 ... w < 2x and y > 3z ..... C
A212511 ... w < 2x and y >= 3z .... C
A212512 ... w <= 2x and y < 3z .... C
A212513 ... w <= 2x and y <= 3z ... C
A212514 ... w <= 2x and y > 3z .... C
A212515 ... w <= 2x and y >= 3z ... C
A212516 ... w > 2x and y < 3z ..... C
A212517 ... w > 2x and y <= 3z .... C
A212518 ... w > 2x and y > 3z ..... C
A212519 ... w > 2x and y >= 3z .... C
A212520 ... w >= 2x and y < 3z .... C
A212521 ... w >= 2x and y <= 3z ... C
A212522 ... w >= 2x and y > 3z .... C
A212523 ... w + x < y + z
A212560 ... w + x <= y + z
A212561 ... w + x = 2y + 2z
A212562 ... w + x < 2y + 2z ....... B
A212563 ... w + x <= 2y + 2z ...... B
A212564 ... w + x > 2y + 2z ....... B
A212565 ... w + x >= 2y + 2z ...... B
A212566 ... w + x = 3y + 3z
A212567 ... 2w + 2x = 3y + 3z
A212570 ... |w - x| = |x - y| + |y - z|
A212571 ... |w - x| < |x - y| + |y - z| ... B ... 4 div
A212572 ... |w - x| <= |x - y| + |y - z| .. B
A212573 ... |w - x| > |x - y| + |y - z| ... B ... 2 div
A212574 ... |w - x| >= |x - y| + |y - z| .. B
A212575 ... 2|w - x| = |x - y| + |y - z|
A212576 ... |w - x| = 2|x - y| + 2|y - z|
A212577 ... |w - x| = 2|x - y| - |y - z|
A212578 ... 2|w - x| = |x - y| - |y - z|
A212579 ... min{|w-x|,|w-y|} = min{|x-y|,|x-z|}
A212692 ... w = |x - y| + |y - z| ............... 2 div
A212568 ... w < |x - y| + |y - z| ............... 2 div
A212573 ... w <= |x - y| + |y - z| .............. 2 div
A212574 ... w > |x - y| + |y - z|
A212575 ... w >= |x - y| + |y - z|
A212676 ... w + x = |x - y| + |y - z| ......... H
A212677 ... w + y = |x - y| + |y - z|
A212678 ... w + x + y = |x - y| + |y - z|
A006918 ... w + x + y + z = |x - y| + |y - z| . H
A212679 ... |x - y| = |y - z| ................. H
A212680 ... |x - y| = |y - z| + 1 ..............H 2 div
A212681 ... |x - y| < |y - z| ................... 2 div
A212682 ... |x - y| >= |y - z|
A212683 ... |x - y| = w + |y - z| ............... 2 div
A212684 ... |x - y| = n - w + |y - z|
A212685 ... |w - x| = w + |y - z|
A186707 ... |w - x| < w + |y - z| ... (Note D)
A212714 ... |w - x| >= w + |y - z| .......... H . 2 div
A212686 ... 2*|w - x| = n + |y - z| ............. 4 div
A212687 ... 2*|w - x| < n + |y - z| ......... B
A212688 ... 2*|w - x| < n + |y - z| ......... B . 2 div
A212689 ... 2*|w - x| > n + |y - z| ......... B . 2 div
A212690 ... 2*|w - x| <= n + |y - z| ........ B
A212691 ... w + |x - y| = |x - z| + |y - z| . E . 2 div
...
In the above lists, all the terms of (w,x,y,z) are in {1,...,n}, but in the next lists they are all in {0,...,n}, and sequences are all linearly recurrent.
R=range{w,x,y,z}=max{w,x,y,z}-min{w,x,y,z}.
A212740 ... max{w,x,y,z} < 2*min{w,x,y,z} .... A
A212741 ... max{w,x,y,z} >= 2*min{w,x,y,z} ... A
A212742 ... max{w,x,y,z} <= 2*min{w,x,y,z} ... A
A212743 ... max{w,x,y,z} > 2*min{w,x,y,z} .... A . 2 div
A212744 ... w=range (=max-min) ............... E
A212745 ... w=max{w,x,y,z} - 2*min{w,x,y,z}
A212746 ... R is in {w,x,y,z} ................ E
A212569 ... R is not in {w,x,y,z} ............ E
A212749 ... w=R or x
A212750 ... w=R or x=R or y
A212751 ... w=R or x=R or y
A212752 ... wR ......... A
A212753 ... wR or z>R ......... D
A212754 ... wR or y>R or z>R ......... D
A002415 ... w = x + R ........................ D
A212755 ... |w - x| = R ...................... D
A212756 ... 2w = x + R
A212757 ... 2w = R
A212758 ... w = floor(R/2)
A002413 ... w = floor((x+y+z/2))
A212759 ... w, x, y are even
A212760 ... w is even and x = y + z .......... E
A212761 ... w is odd and x and y are even .... F . 2 div
A212762 ... w and x are odd y is even ........ F . 2 div
A212763 ... w, x, y are odd .................. F
A212764 ... w, x, y are even and z is odd .... F
A030179 ... w and x are even and y and z odd
A212765 ... w is even and x,y,z are odd ...... F
A212766 ... w is even and x is odd ........... A . 2 div
A212767 ... w and x are even and w+x=y+z ..... E
A212889 ... R is even ........................ A
A212890 ... R is odd ......................... A . 2 div
A212742 ... w-x, x-y, y-z are all even ....... A
A212892 ... w-x, x-y, y-z are all odd ........ A
A212893 ... w-x, x-y, y-z have same parity ... A
A005915 ... min{|w-x|, |x-y|, |y-z|} = 0
A212894 ... min{|w-x|, |x-y|, |y-z|} = 1
A212895 ... min{|w-x|, |x-y|, |y-z|} = 2
A179824 ... min{|w-x|, |x-y|, |y-z|} > 0
A212896 ... min{|w-x|, |x-y|, |y-z|} <= 1
A212897 ... min{|w-x|, |x-y|, |y-z|} > 1
A212898 ... min{|w-x|, |x-y|, |y-z|} <= 2
A212899 ... min{|w-x|, |x-y|, |y-z|} > 2
A212901 ... |w-x| = |x-y| = |y-z|
A212900 ... |w-x|, |x-y|, |y-z| are distinct . G
A212902 ... |w-x| < |x-y| < |y-z| ............ G
A212903 ... |w-x| <= |x-y| <= |y-z| .......... G
A212904 ... |w-x| + |x-y| + |y-z| = n ........ H
A212905 ... |w-x| + |x-y| + |y-z| = 2n ....... H
...
Note A: A212503-A212506 (and others) have these recurrence coefficients: 2,2,-6,0,6,-2,-2,1.
B: 3,-1,-5,5,1,-3,1
C: 0,2,2,-1,-4,0,2,0,-2,0,4,1,-2,-2,0,1
D: 4,-5,0,5,-4,1
E: 1,3,-3,-3,3,1,-1
F: 1,4,-4,-6,6,4,-4,-1,1
G: 2,1,-3,-1,1,3,-1,-2,1
H: 2,1,-4,1,2,-1

Examples

			a(2)=11 counts these (w,x,y,z): (1,1,1,1), (1,1,1,2), (1,1,2,1), (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2), (1,1,2,2), (1,2,2,2), (2,1,2,2), (2,2,2,2).
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
        (Do[If[w*x < 2 y*z, s = s + 1], {w, 1, #},
          {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A211795 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

Formula

a(n) = n^4 - A211809(n).

A011863 Nearest integer to (n/2)^4.

Original entry on oeis.org

0, 0, 1, 5, 16, 39, 81, 150, 256, 410, 625, 915, 1296, 1785, 2401, 3164, 4096, 5220, 6561, 8145, 10000, 12155, 14641, 17490, 20736, 24414, 28561, 33215, 38416, 44205, 50625, 57720, 65536, 74120, 83521, 93789, 104976, 117135, 130321, 144590
Offset: 0

Author

Keywords

Comments

First differences are in A019298.
The bisections are A000583 and A219086.
Number of ways to put n-1 copies of 1,2,3 into sets. [Zeilberger?]
s(n) is the number of 4-tuples (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|; see A186707. - Clark Kimberling, May 24 2012

Programs

  • Magma
    [ (2*n^4-(1-(-1)^n))/32: n in [0..50] ];
    
  • Maple
    seq(round((n/2)^4), n=0..40);
  • Mathematica
    Round[(Range[40]/2)^4] (* or *) LinearRecurrence[{4,-5,0,5,-4,1},{0,1,5,16,39,81},40] (* Harvey P. Dale, Feb 07 2015 *)
  • PARI
    a(n)=round((n/2)^4) \\ Charles R Greathouse IV, Jun 23 2011

Formula

G.f.: x^2*(1 + x + x^2)/((1 - x)^5*(1+x)).
a(n) = +4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6). - R. J. Mathar, Dec 07 2010
a(n)+a(n+1) = A002817(n). - R. J. Mathar, Dec 19 2008
a(n) = n^4/16 - 1/32 + (-1)^n/32 - R. J. Mathar, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = (2*A000583(n) + (-1)^n - 1)/32. - Bruno Berselli, Dec 07 2010, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
n*(n^2+n+2)*a(n+1) = 4*(n^2+2*n+2)*a(n)+(n+2)*(n^2+3*n+4)*a(n-1). Holonomic Ansatz with smallest order of recurrence. - Thotsaporn Thanatipanonda, Dec 12 2010
a(n) = floor(n^4/8)/2. - Gary Detlefs, Feb 19 2011, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
a(n) = A212714(n)/2, n >= 0. - Wolfdieter Lang, Oct 03 2016, adapted to added a(0) by Hugo Pfoertner, Dec 29 2019
E.g.f.: (1/32)*exp(-x)*(1 + exp(2*x)*(-1 + 2*x + 14*x^2 + 12*x^3 + 2*x^4)). - Stefano Spezia, Dec 29 2019
Sum_{n>=2} 1/a(n) = 6 + Pi^4/90 - 2*Pi*tanh(Pi/2). - Amiram Eldar, Aug 13 2022

Extensions

Missing a(0) added by N. J. A. Sloane, Dec 29 2019. As a result some of the comments and formulas will need to be adjusted.

A054772 Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones, up to rotational symmetry.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 22, 34, 34, 22, 10, 3, 1, 1, 4, 32, 140, 464, 1092, 2016, 2860, 3238, 2860, 2016, 1092, 464, 140, 32, 4, 1, 1, 7, 78, 578, 3182, 13302, 44330, 120230, 270525, 510875, 817388, 1114548, 1300316, 1300316, 1114548, 817388
Offset: 0

Author

Vladeta Jovovic, May 18 2000

Keywords

Comments

Row sums give A047937.
From Wolfdieter Lang, Oct 01 2016: (Start)
The formula is obtained from Pólya's counting theorem. See, e.g., the Harary-Palmer reference.
The cycle index for a square grid of n X n squares G(n), n >= 1, under the cyclic group C_4 is
(s[1]^(n^2)+s[2]^(n^2/2)+2*s[4]^(n^2/4))/4 if n is even,
s[1]*(s[1]^(n^2-1) + s[2]^((n^2-1)/2) + 2*s[4]^((n^2-1)/4))/4 if n is odd. (Numerate the squares from 1 .. n^2 and compute for the C_4 rotations the cycle structure of the permutation from the symmetric group S(n^2)).
The figure counting series is c(x) = 1+x for coloring, say black and white (in the matrix case binary entries).
Therefore the counting series is C(n,x) = G(n) with substitution s[2^j] = c(x^(2*j)) = 1 + x^(2^j) for j=0,1,2. Row n gives the coefficients of C(n,x) in rising (or falling) order. (End)
A pedantic note: One should not use 0,1 matrices for this T(n,k) model because 1 (also |) is not C_4 invariant. Square grids with coloring of the squares, say black and white, or central entries o and + are better suited. - Wolfdieter Lang, Oct 02 2016

Examples

			[1],[1,1],[1,1,2,1,1],[1,3,10,22,34,34,22,10,3,1],...;
There are 10 inequivalent 3 X 3 binary matrices with 2 ones, up to rotational symmetry:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[0 1 1] [1 0 1] [1 1 0] [0 1 0] [1 0 0]
-------
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1]
[0 1 0] [0 1 0] [1 0 0] [1 0 1] [0 0 0]
[0 0 1] [0 1 0] [0 0 1] [0 0 0] [1 0 0].
- reformatted. _Wolfdieter Lang_, Oct 01 2016
See a remark above: use o for 0 and + for 1.
n=3: Cycle index G(3) = s[1]*(s[1]^8 + s[2]^4 + 2*s[4]^2)/4. C(3,x) = (1+x)*((1+x)^8 + (1+x^2)^4 + 2*(1+x^4)^2)/4 = 1 + 3*x + 10*x^2 + 22*x^3 + 34*x^4 + 34*x^5 + 22*x^6 + 10*x^7 + 3*x^8 + x^9. - _Wolfdieter Lang_, Oct 01 2016
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6).

Crossrefs

Cf. A054252, columns k=0..4: A000012, A004652, A212714, A011863, A275799.

Formula

See the comment above: T(n,k) = [x^k]C(n,x), with the counting series C(n,x) obtained from the cycle index for the n X n grid under C_4 rotations G(n;s[1],s[2],s[4]) with s[2^j] = 1 + x^(2^j) for j=0,1,2. - Wolfdieter Lang, Oct 01 2016

A275799 Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and three squares have one of the colors.

Original entry on oeis.org

1, 22, 140, 578, 1785, 4612, 10416, 21340, 40425, 72010, 121836, 197582, 308945, 468328, 690880, 995352, 1404081, 1944030, 2646700, 3549370, 4694921, 6133292, 7921200, 10123828, 12814425, 16076242, 20001996, 24696070, 30273825, 36864080
Offset: 2

Author

Wolfdieter Lang, Oct 03 2016

Keywords

Comments

See the k=3 column of table A054772(n, k), with more explanations there.

Crossrefs

Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2).

Programs

  • PARI
    Vec(x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6)/((1-x)^7*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016

Formula

a(n) = A054772(n, 3) = A054772(n, n^2-3), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6) / ((1-x)^7*(1+x)^3).
a(n) = (n^6-3*n^4+2*n^2)/24 for n even.
a(n) = (n^6-3*n^4+5*n^2-3)/24 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = C(n^2,3)/4 for n even,
a(n) = (C(n^2,3) + (n^2-1)/2)/4 for n odd. (End)

A277226 Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and four squares have one of the colors.

Original entry on oeis.org

1, 34, 464, 3182, 14769, 53044, 158976, 416140, 980625, 2124310, 4295376, 8199674, 14907809, 25992232, 43700224, 71167704, 112680801, 173990730, 262690000, 388656070, 564571601, 806527964, 1134722304, 1574255332, 2156041329, 2917838014, 3905408976, 5173826770, 6788930625
Offset: 2

Author

Wolfdieter Lang, Oct 06 2016

Keywords

Comments

See the k=4 column of table A054772(n, k), with more explanations there.

Crossrefs

Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2), A275799 (k=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3))); // G. C. Greubel, Oct 22 2018
  • Mathematica
    CoefficientList[Series[x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
  • PARI
    Vec(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7 +x^8)/((1-x)^9*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016
    

Formula

a(n) = A054772(n, 4) = A054772(n, n^2-4), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7+x^8) / ((1-x)^9*(1+x)^3).
a(n) = (n^8-6*n^6+14*n^4)/96 for n even.
a(n) = (n^8-6*n^6+14*n^4-6*n^2-3)/96 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = (C(n^2,4) + C(n^2/2,2) + n^2/2)/4 for n even,
a(n) = (C(n^2,4) + C((n^2-1)/2,2) + (n^2-1)/2)/4 for n odd. (End)
Showing 1-5 of 5 results.