cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A054252 Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones under action of dihedral group of the square D_4.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 16, 23, 23, 16, 8, 3, 1, 1, 3, 21, 77, 252, 567, 1051, 1465, 1674, 1465, 1051, 567, 252, 77, 21, 3, 1, 1, 6, 49, 319, 1666, 6814, 22475, 60645, 136080, 256585, 410170, 559014, 652048, 652048, 559014, 410170, 256585, 136080
Offset: 0

Views

Author

Vladeta Jovovic, May 04 2000

Keywords

Comments

From Geoffrey Critzer, Feb 19 2013: (Start)
Cycle indices for n=2,3,4,5 respectively are:
(1/8)(s[1]^4 + 2*s[1]^2*s[2] + 3*s[2]^2 + 2*s[4]).
(1/8)(s[1]^9 + 4*s[1]^3*s[2]^3 + s[1]s[2]^4 + 2*s[1]*s[4]^2).
(1/8)(s[1]^16 + 2*s[1]^4*s[2]^6 + 2*s[4]^4 + 3*s[2]^8).
(1/8)(s[1]^25 + 4*s[1]^5*s[2]^10 + 2*s[1]*s[4]^6 + s[1]*s[2]^12).
(End)
Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X n square under all symmetry operations of the square. - Christopher Hunt Gribble, Feb 17 2014
From Wolfdieter Lang, Oct 03 2016: (Start)
The cycle index G(n) for a square n X n grid with squares coming in two colors with k squares of one color is for the D_4 group (with 8 elements R(90)^j, S R(90)^j, j=0..3)
(s[1]^(n^2) + s[2]^(n^2/2) +2*s[4]^(n^2/4))/8 + (s[2]^(n^2/2) + s[1]^n*s[2]^((n^2-n)/2))/4 if n is even,
s[1]*((s[1]^(n^2-1) + s[2]^((n^2-1)/2) + 2*s[4]^((n^2-1)/4))/8) + s[1]^n*s[2]^(n*(n-1)/2)/2 if n is odd.
See the above comment by Geoffrey Critzer for n=2..5.
The figure counting series is c(x) = 1 + x for coloring, say black and white.
Therefore the counting series is C(n,x) = G(n) with substitution s[2^j] = c(x^(2*j)) = 1 + x^(2^j) for j=0,1,2. Row n gives the coefficients of C(n,x) in rising (or falling) order. This follows from Pólya's counting theorem. See the Harary-Palmer reference, p. 42, eq. (2.4.6), and eq. (2.2.11) with n=4 on p. 37 for the cycle index of D_4.
(End)

Examples

			T(3,2) = 8 because there are 8 nonisomorphic 3 X 3 binary matrices with two ones under action of D_4:
  [0 0 0] [0 0 0] [0 0 0] [0 0 0]
  [0 0 0] [0 0 0] [0 0 1] [0 0 1]
  [0 1 1] [1 0 1] [0 1 0] [1 0 0]
---------------------------------
  [0 0 0] [0 0 0] [0 0 0] [0 0 1]
  [0 1 0] [0 1 0] [1 0 1] [0 0 0]
  [0 0 1] [0 1 0] [0 0 0] [1 0 0]
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 2,  1,  1;
1, 3, 8, 16, 23, 23, 16, 8, 3, 1;
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6), p. 37, (2.2.11).

Crossrefs

Cf. A014409, A019318, A054247 (row sums), A054772.

Programs

  • Mathematica
    (* As a triangle *) Prepend[Prepend[Table[CoefficientList[CycleIndexPolynomial[
    GraphData[{"Grid", {n, n}}, "AutomorphismGroup"],Table[Subscript[s, i], {i, 1, 4}]] /. Table[Subscript[s, i] -> 1 + x^i, {i, 1, 4}], x], {n, 2, 10}], {1, 1}], {1}] // Grid (* Geoffrey Critzer, Aug 09 2016 *)
  • Sage
    def T(n, k):
        if n == 0 or k == 0 or k == n*n:
            return 1
        grid = graphs.Grid2dGraph(n, n)
        m = grid.automorphism_group().cycle_index().expand(2, 'b, w')
        b, w = m.variables()
        return m.coefficient({b: k, w: n*n-k})
    [T(n, k) for n in range(6) for k in range(n*n + 1)] # Freddy Barrera, Nov 23 2018

A004652 Expansion of x*(1+x^2+x^4)/((1-x)*(1-x^2)*(1-x^3)).

Original entry on oeis.org

0, 1, 1, 3, 4, 7, 9, 13, 16, 21, 25, 31, 36, 43, 49, 57, 64, 73, 81, 91, 100, 111, 121, 133, 144, 157, 169, 183, 196, 211, 225, 241, 256, 273, 289, 307, 324, 343, 361, 381, 400, 421, 441, 463, 484, 507, 529, 553, 576, 601, 625, 651, 676, 703, 729, 757, 784, 813
Offset: 0

Views

Author

Keywords

Comments

As a Molien series this arises as (1+x^12)/((1-x^4)*(1-x^8)^2).
Starting (1, 3, 4, ...) = row sums of an infinite triangle with alternate columns of (1, 2, 3, ...) and (1, 0, 0, 0, ...). - Gary W. Adamson, May 14 2010
a(n) is also the number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and one square has one of the colors. See the formula from A054772. - Wolfdieter Lang, Oct 03 2016
Also the genus of the complete bipartite graph K_{n+2,n+2}. - Eric W. Weisstein, Jan 19 2018

Examples

			From _Gary W. Adamson_, May 14 2010: (Start)
First few rows of the generating triangle =
1;
2, 1;
3, 0, 1;
4, 0, 2, 1;
5, 0, 3, 0, 1;
6, 0, 4, 0, 2, 1;
7, 0, 5, 0, 3, 0, 1;
8, 0, 6, 0, 4, 0, 2, 1;
...
Example: a(7) = 13 = (6 + 0 + 4 + 0 + 2 + 1). (End)
x + x^2 + 3*x^3 + 4*x^4 + 7*x^5 + 9*x^6 + 13*x^7 + 16*x^8 + 21*x^9 + ...
		

Crossrefs

First differences give A028242. Cf. A035104, A035106.
A002061(n)=a(2*n-1). A035104(n)=a(n+7)-12. A035106(n)=a(n+3)-1.
Column 1 of A195040. - Omar E. Pol, Sep 28 2011
Cf. A054772, column 2.

Programs

  • Haskell
    a004652 = ceiling . (/ 4) . fromIntegral . (^ 2)
    a004652_list = 0 : 1 : zipWith (+) a004652_list [1..]
    -- Reinhard Zumkeller, Dec 18 2013
  • Magma
    [Ceiling(n^2/4): n in [0..60] ]; // Vincenzo Librandi, Aug 19 2011
    
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=2)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m+3),m=0..57) ; # Zerinvary Lajos, Mar 09 2007
  • Mathematica
    CoefficientList[Series[x (1 - x + x^2)/((1 - x)^2*(1 - x^2)), {x, 0, 57}], x] (* Michael De Vlieger, Oct 03 2016 *)
    Table[Ceiling[n^2/4], {n, 0, 20}] (* Eric W. Weisstein, Jan 19 2018 *)
    Ceiling[Range[0, 20]^2/4] (* Eric W. Weisstein, Jan 19 2018 *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 3, 4}, {0, 20}] (* Eric W. Weisstein, Jan 19 2018 *)
  • PARI
    {a(n) = ceil(n^2 / 4)}
    

Formula

a(n) = ceiling(n^2/4).
a(-n) = a(n).
G.f.: x * (1 - x + x^2) / ((1 - x)^2 * (1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + 1. a(2*n) = n^2, a(2*n-1) = n^2 - n + 1. - Michael Somos, Apr 21 2000
Interleaves square numbers with centered polygonal numbers: a(2*n)=A000290(n), a(2*n+1)=A002061(n+1). - Paul Barry, Mar 13 2003
For n > 1: a(n) is the digit reversal of n in base A008619(n), where a(n) is written in base 10. - Naohiro Nomoto, Mar 15 2004
a(n) = a(n-2) + n - 1. - Paul Barry, Jul 14 2004
Euler transform of length 6 sequence [ 1, 2, 1, 0, 0, -1]. - Michael Somos, Apr 03 2007
Starting (1, 3, 4, 7, 9, 13, ...), row sums of triangle A135840. - Gary W. Adamson, Dec 01 2007
a(n) = (3/8)*(-1)^(n+1) + 5/8 - (3/4)*(n+1) + (1/4)*(n+2)*(n+1). - Richard Choulet, Nov 27 2008
a(n) = n^2/4 - 3*((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
a(n) = -n + floor( (n+1)(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013
a(n) = A054772(n, 1) = A054772(n, n^2-1), n >= 1. - Wolfdieter Lang, Oct 03 2016
E.g.f.: (x*(x + 1)*exp(x) + 3*sinh(x))/4. - Ilya Gutkovskiy, Oct 03 2016
a(n) = binomial(floor((n+3)/2),2) + binomial(floor((n+(-1)^n)/2),2). - Yuchun Ji, Feb 03 2021

A212714 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x| >= w + |y-z|.

Original entry on oeis.org

0, 0, 2, 10, 32, 78, 162, 300, 512, 820, 1250, 1830, 2592, 3570, 4802, 6328, 8192, 10440, 13122, 16290, 20000, 24310, 29282, 34980, 41472, 48828, 57122, 66430, 76832, 88410, 101250, 115440, 131072, 148240, 167042, 187578, 209952
Offset: 0

Views

Author

Clark Kimberling, May 24 2012

Keywords

Comments

For a guide to related sequences, see A211795.
a(n) is also the number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and two squares have one of the colors. See the formula from A054772. - Wolfdieter Lang, Oct 03 2016

Crossrefs

Programs

  • Magma
    I:=[0,0,2,10,32,78]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+5*Self(n-4)-4*Self(n-5)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Aug 02 2013
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] >= w + Abs[y - z], s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212714 *)
    %/2  (* A011864 except for offset *)
    LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 0, 2, 10, 32, 78}, 40]
    CoefficientList[Series[(2 x^2 + 2 x^3 + 2 x^4) / (1 - 4 x + 5 x^2 - 5 x^4 + 4 x^5 - x^6), {x, 0, 80}], x] (* Vincenzo Librandi, Aug 02 2013 *)

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: (2*x^2 + 2*x^3 + 2*x^4)/(1 - 4*x + 5*x^2 - 5*x^4 + 4*x^5 - x^6).
a(n) = floor(n^4/8). - Wesley Ivan Hurt, Jul 14 2013
a(n) = A054772(n, 2) = A054772(n, n^2-2), n >= 2. - Wolfdieter Lang, Oct 03 2016

A343874 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotational symmetry.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 5, 13, 4, 1, 0, 1, 10, 43, 36, 7, 1, 0, 1, 14, 129, 204, 85, 9, 1, 0, 1, 22, 327, 980, 735, 171, 13, 1, 0, 1, 30, 761, 3876, 5145, 2109, 313, 16, 1, 0, 1, 43, 1619, 13596, 29715, 20610, 5213, 528, 21, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2021

Keywords

Examples

			Array begins:
=====================================================
n\k | 0  1   2    3     4      5       6        7
----+------------------------------------------------
  0 | 1  0   0    0     0      0       0        0 ...
  1 | 1  1   1    1     1      1       1        1 ...
  2 | 1  1   3    5    10     14      22       30 ...
  3 | 1  3  13   43   129    327     761     1619 ...
  4 | 1  4  36  204   980   3876   13596    42636 ...
  5 | 1  7  85  735  5145  29715  148561   657511 ...
  6 | 1  9 171 2109 20610 164502 1124382  6744582 ...
  7 | 1 13 313 5213 67769 717509 6457529 50732669 ...
  ...
		

Crossrefs

Rows n=0..4 are A000007, A000012, A008610, A054771, A054773.
Columns k=0..1 are A000012, A004652.
Cf. A054772 (binary case), A318795, A343095, A343875.

Programs

  • PARI
    U(n,s)={(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)))/4}
    T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}

A242279 Number of inequivalent (mod D_4) ways four checkers can be placed on an n X n board.

Original entry on oeis.org

1, 23, 252, 1666, 7509, 26865, 79920, 209096, 491425, 1064575, 2150076, 4104738, 7458437, 13005041, 21857984, 35598880, 56353185, 87019191, 131364700, 194364050, 282314901, 403316353, 567402672, 787201416, 1078078209, 1459020095, 1952782300, 2587048786, 3394568325
Offset: 2

Views

Author

Heinrich Ludwig, May 10 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5), {x, 0, 20}], x] (* Vaclav Kotesovec, May 10 2014 *)
    LinearRecurrence[{4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1},{0,0,1,23,252,1666,7509,26865,79920,209096,491425,1064575,2150076,4104738},40] (* Harvey P. Dale, May 06 2018 *)

Formula

a(n) = (n^8 - 6*n^6 + 40*n^4 - 48*n^3 + 16*n^2 + IF(MOD(n, 2) = 1)*(14*n^4 - 48*n^3 + 34*n^2 - 3))/192.
G.f.: x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5). - Vaclav Kotesovec, May 10 2014
a(n) = A054772(n, 4), n >= 2. - Wolfdieter Lang, Oct 03 2016

A242358 Number of inequivalent (mod D_4) ways five checkers can be placed on an n X n board.

Original entry on oeis.org

23, 567, 6814, 47358, 239511, 954226, 3207212, 9414828, 24862239, 60136329, 135311658, 286229762, 574460495, 1101240084, 2028333848, 3605765688, 6211552455, 10402472811, 16984387958, 27099325638, 42342870823, 64905898662, 97761436356, 144885584740, 211543443215
Offset: 3

Views

Author

Heinrich Ludwig, May 11 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6), {x, 0, 20}], x],3] (* Vaclav Kotesovec, May 11 2014 *)

Formula

a(n) = (n^10 - 10*n^8 + 35*n^6 + 52*n^5 - 210*n^4 + 140*n^3 - 56*n^2 + 48*n + IF(MOD(n, 2) = 1)*(52*n^5 - 145*n^4 + 140*n^3 - 80*n^2 + 48*n - 15))/960.
G.f.: x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6). - Vaclav Kotesovec, May 11 2014
a(n) = A054772(n, 5), n >=3. - Wolfdieter Lang, Oct 03 2016

A276454 a(n) = A276452(n) + A276451(n) + A276449(n).

Original entry on oeis.org

1, 2, 22, 464, 13302, 487152, 21475652, 1106550392, 65221981530, 4327577893800, 319187492622012, 25904823495240144, 2294089575287710984, 220132629099295901408, 22751391952803426496488, 2519687900505935894639088, 297684761086123702744203918
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence {a(n)} gives the number of all orbits under C_4 of 2-colored n X n square grids with n squares of one color.
See A054772(n, k) for the table of these total C_4 orbit numbers for 2-colored grids with any number k from {0,1,...,n^2} of squares of one color. - Wolfdieter Lang, Oct 02 2016

Examples

			For n = 4 there are A276449(4) = 4 1-orbits, represented by
   + o o +   o + o o   o o + o   o o o o
   o o o o   o o o +   + o o o   o + + o
   o o o o   + o o o   o o o +   o + + o
   + o o +   o o + o   o + o o   o o o o  .
A276451(4) = 12 2-orbits: one of them is
   + o + o   o o o +
   o o o o   + o o o
   o o o o   o o o +
   o + o +   + o o o  ,
and one can take the first one as representative.
A276452(4) = 448 4-orbits: one of them is represented by
   + + + +
   o o o o
   o o o o
   o o o o .
The complete orbit structure for n=4 is 1^4 2^12 4^448, see A276449(4) = 4, A276451(4) = 12, A276452(4) = 448.
a(4) = 448 + 12 + 4 = 464.
A014062(4) = 448*4 + 12*2 + 4*1 = 1820.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4];g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4 + (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2 + f@ n, {n, 17}] (* Michael De Vlieger, Sep 12 2016 *)
  • Python
    from math import comb as binomial
    for j in range(1, 20):
        t = binomial(j * j, j)
        i = j // 2
        if j % 2 == 0:
            d = binomial(2 * i * i, i)
        else:
            d = binomial(2 * i * (i + 1), i)
        a = (t - d) // 4
        if j % 4 == 0:
            c = binomial((j * j // 4), (j // 4))
        elif j % 4 == 1:
            c = binomial(((j - 1) // 2) * ((j - 1) // 2 + 1), ((j - 1) // 4))
        else:
            c = 0
        b = (d - c) // 2
        print(str(j) + " " + str(a + b + c))

Formula

a(n) = A276452(n) + A276451(n) + A276449(n) for n = 1, 2, 3, ...,
A014062(n) = A276452(n)*4 + A276451(n)*2 + A276449(n).
a(n) = A054772(n, 2), n >= 1. - Wolfdieter Lang, Oct 02 2016

Extensions

Edited by Wolfdieter Lang, Oct 02 2016

A275799 Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and three squares have one of the colors.

Original entry on oeis.org

1, 22, 140, 578, 1785, 4612, 10416, 21340, 40425, 72010, 121836, 197582, 308945, 468328, 690880, 995352, 1404081, 1944030, 2646700, 3549370, 4694921, 6133292, 7921200, 10123828, 12814425, 16076242, 20001996, 24696070, 30273825, 36864080
Offset: 2

Views

Author

Wolfdieter Lang, Oct 03 2016

Keywords

Comments

See the k=3 column of table A054772(n, k), with more explanations there.

Crossrefs

Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2).

Programs

  • PARI
    Vec(x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6)/((1-x)^7*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016

Formula

a(n) = A054772(n, 3) = A054772(n, n^2-3), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+18*x+55*x^2+92*x^3+55*x^4+18*x^5+x^6) / ((1-x)^7*(1+x)^3).
a(n) = (n^6-3*n^4+2*n^2)/24 for n even.
a(n) = (n^6-3*n^4+5*n^2-3)/24 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = C(n^2,3)/4 for n even,
a(n) = (C(n^2,3) + (n^2-1)/2)/4 for n odd. (End)

A277226 Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and four squares have one of the colors.

Original entry on oeis.org

1, 34, 464, 3182, 14769, 53044, 158976, 416140, 980625, 2124310, 4295376, 8199674, 14907809, 25992232, 43700224, 71167704, 112680801, 173990730, 262690000, 388656070, 564571601, 806527964, 1134722304, 1574255332, 2156041329, 2917838014, 3905408976, 5173826770, 6788930625
Offset: 2

Views

Author

Wolfdieter Lang, Oct 06 2016

Keywords

Comments

See the k=4 column of table A054772(n, k), with more explanations there.

Crossrefs

Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2), A275799 (k=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3))); // G. C. Greubel, Oct 22 2018
  • Mathematica
    CoefficientList[Series[x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
  • PARI
    Vec(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7 +x^8)/((1-x)^9*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016
    

Formula

a(n) = A054772(n, 4) = A054772(n, n^2-4), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7+x^8) / ((1-x)^9*(1+x)^3).
a(n) = (n^8-6*n^6+14*n^4)/96 for n even.
a(n) = (n^8-6*n^6+14*n^4-6*n^2-3)/96 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = (C(n^2,4) + C(n^2/2,2) + n^2/2)/4 for n even,
a(n) = (C(n^2,4) + C((n^2-1)/2,2) + (n^2-1)/2)/4 for n odd. (End)
Showing 1-9 of 9 results.