cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276449 Number of 1-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

1, 0, 0, 4, 6, 0, 0, 120, 190, 0, 0, 7140, 11480, 0, 0, 635376, 1028790, 0, 0, 75287520, 122391522, 0, 0, 11143364232, 18161699556, 0, 0, 1978369382080, 3230129794320, 0, 0, 409663695276000, 669741609663270, 0, 0, 96930293990660064, 158625578809472060
Offset: 1

Views

Author

Keywords

Comments

The old name was: Number of ways to choose n points from an n X n grid so that they have 90-degree rotational symmetry.
Consider a square n X n grid with n^2 squares. Each of the n^2 squares comes in two colors.
(E.g., an n X n chessboard with only two black fields, or a binary n X n matrix).
There are N(n) = binomial(n^2,n) = A014062(n) such 2-color grids. We are interested in configurations where n squares are colored in one way, say black, and the remaining ones stay white. Only colored grids modulo rotation around some axis perpendicular to the board through its center are of interest. These rotations represent the cyclic group C_4. Under C_4 operations R(90)^k, k=1..4, there will only be orbits of order 1 (colored grids invariant under R(90)^1, hence any rotation) order 2 (two different grids each not invariant under R(90)^1 but R(90)^2 operation, transforming into each other) and order 4 (four different grids each not invariant under R(90)^k for k=1,2,3, but under R(4)^4, transforming into each other). The orbit structure is denoted by 1^(e(n,1)) 2^(e(n,2)) 4^(e(n,4)) with e(n, 2^j) nonnegative integers for j=0,1,2. One has Sum_{j=0,1,2} 2^j*e(n,2^j) = N(n), and Sum_{j=0,1,2} e(n,2^j) which is the total number of orbits, given in A276454(n).
For example, one of the four 1-orbits of 4 X 4 board. (o) white, (+) black:
+ o o +
o o o o
o o o o
+ o o + ,
an example of a 2-orbit,
+ o + o o o o +
o o o o + o o o
o o o o o o o +
o + o + + o o o ,
an example of a 4-orbit,
+ + + + o o o + o o o o + o o o
o o o o o o o + o o o o + o o o
o o o o o o o + o o o o + o o o
o o o o o o o + + + + + + o o o .
The present sequence a(n) gives the number of 1-orbits of such 2-colored boards with n squares of one color under C_4.

Examples

			a(4) = 4, the arrangements are as follows:
   + o o +   o + o o   o o + o   o o o o
   o o o o   o o o +   + o o o   o + + o
   o o o o   + o o o   o o o +   o + + o
   + o o +   o o + o   o + o o   o o o o
a(5) = 6, the arrangements are as follows:
   + o o o +   o + o o o   o o + o o
   o o o o o   o o o o +   o o o o o
   o o + o o   o o + o o   + o + o +
   o o o o o   + o o o o   o o o o o
   + o o o +   o o o + o   o o + o o
   and
   o o o + o   o o o o o   o o o o o
   + o o o o   o + o + o   o O + o o
   O o + o o   o o + o o   o + + + o
   o o o o +   o + O + O   o o + o o
   o + o o o   o o o o o   o o o o o
reformatted - _Wolfdieter Lang_, Oct 02 2016
		

Crossrefs

Programs

  • Maple
    seq(op([binomial(2*i*(2*i+1),i),0,0,binomial(4*(i+1)^2,i+1)]),i=0..30); # Robert Israel, Sep 05 2016
  • Mathematica
    Table[If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4], {n, 37}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        if j%4 == 0:
            a = nCr((j*j/4),(j/4))
        elif j%4 == 1:
            a = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
        else:
            a = 0
        print(str(j)+" "+str(a))

Formula

a(n) = binomial((2*i)^2,i), for n = 4*i,
a(n) = binomial((2*i)*(2*i+1),i), for n = 4*i+1,
a(n) = 0, for others.

Extensions

Edited: New name. Old name as a comment. Text substantially changed. Wolfdieter Lang, Oct 02 2016

A276451 Number of 2-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 2, 12, 30, 408, 1012, 17920, 45600, 1059380, 2730756, 78115884, 203235032, 6917206576, 18113945256, 714851008512, 1881039165696, 84449819514060, 223049005408900, 11225502116862880, 29736777118603962, 1658138369930988088, 4403069737450280832
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence a(n) gives the number of 2-orbits of such 2-color boards with n squares of one color under C_4.

Examples

			n = 4: one of the two 2-orbits is (o white, + black)
+ o + o   o o o +
o o o o   + o o o
o o o o   o o o +
o + o +   + o o o,
and one can take the first one as a representative.
For n = 3 there are a(3) = 2 2-orbits, represented by
+ o o       o o o
o + o  and  + + +
o o +       o o o.
The orbit structure for n=3 is 1^0 2^2 4^20; see A276449(3) = 0, a(3) = 2, A276452(3) = 20.
For the 12 2-orbits for n=4, see the representatives given in the link.
		

Crossrefs

Programs

  • Mathematica
    Table[(Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4])/2, {n, 23}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        if j%4==0:
            c = nCr((j*j/4),(j/4))
        elif j%4==1:
            c = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
        else:
            c = 0
        print(str(j)+" "+str((b-c)/2))

Formula

a(n) = (binomial(2*i*i,i) - A276449(n))/2, for n = 2*i.
a(n) = (binomial(2*i*(i+1),i) - A276449(n))/2, for n = 2*i+1.

Extensions

Edited: Wolfdieter Lang, Oct 02 2016

A276452 Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449. The present sequence a(n) gives the number of 4-orbits under C_4 of such 2-colored n X n grids with n squares of one color.

Examples

			a(2) = 1: the 4-orbit is
+ +   o +   o o   + o
o o   o +   + +   + o  ,
and one can take the first one as representative.
For n = 3 there are a(3) = 20 4-orbits, represented by
+ + +   + + o   + + o   + + o   + + o
o o o   + o o   o + o   o o +   o o o
o o o   o o o   o o o   o o o   + o o
--------------------------------------
+ + o   + + o   + o +   + o +   + o +
o o o   o o o   + o o   o + o   o o o
o + o   o o +   o o o   o o o   + o o
--------------------------------------
+ o +   + o o   + o o   + o o   + o o
o o o   + + o   + o +   + o o   + o o
o + o   o o o   o o o   o + o   o o +
--------------------------------------
+ o o   + o o   + o o   o + o   o + o
o + +   o + o   o o +   + + o   + o +
o o o   o + o   o + o   o o o   o o o .
--------------------------------------
The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        a = nCr(j*j,j)
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        print(str(j)+" "+str((a-b)/4))

Formula

a(n) = (A014062(n) - A276451(n)*2 - A276449(n))/4 for n = 1, 2, 3, ...
Showing 1-3 of 3 results.