A276449 Number of 1-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
1, 0, 0, 4, 6, 0, 0, 120, 190, 0, 0, 7140, 11480, 0, 0, 635376, 1028790, 0, 0, 75287520, 122391522, 0, 0, 11143364232, 18161699556, 0, 0, 1978369382080, 3230129794320, 0, 0, 409663695276000, 669741609663270, 0, 0, 96930293990660064, 158625578809472060
Offset: 1
Examples
a(4) = 4, the arrangements are as follows: + o o + o + o o o o + o o o o o o o o o o o o + + o o o o + + o o o o o + o o o o o o + o + + o + o o + o o + o o + o o o o o o a(5) = 6, the arrangements are as follows: + o o o + o + o o o o o + o o o o o o o o o o o + o o o o o o o + o o o o + o o + o + o + o o o o o + o o o o o o o o o + o o o + o o o + o o o + o o and o o o + o o o o o o o o o o o + o o o o o + o + o o O + o o O o + o o o o + o o o + + + o o o o o + o + O + O o o + o o o + o o o o o o o o o o o o o reformatted - _Wolfdieter Lang_, Oct 02 2016
Links
- Hong-Chang Wang, Table of n, a(n) for n = 1..100
Programs
-
Maple
seq(op([binomial(2*i*(2*i+1),i),0,0,binomial(4*(i+1)^2,i+1)]),i=0..30); # Robert Israel, Sep 05 2016
-
Mathematica
Table[If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4], {n, 37}] (* Michael De Vlieger, Sep 07 2016 *)
-
Python
import math def nCr(n,r): f = math.factorial return f(n) / f(r) / f(n-r) # main program for j in range(101): if j%4 == 0: a = nCr((j*j/4),(j/4)) elif j%4 == 1: a = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4)) else: a = 0 print(str(j)+" "+str(a))
Formula
a(n) = binomial((2*i)^2,i), for n = 4*i,
a(n) = binomial((2*i)*(2*i+1),i), for n = 4*i+1,
a(n) = 0, for others.
Extensions
Edited: New name. Old name as a comment. Text substantially changed. Wolfdieter Lang, Oct 02 2016
Comments