Original entry on oeis.org
1, 2, 22, 464, 13302, 487152, 21475652, 1106550392, 65221981530, 4327577893800, 319187492622012, 25904823495240144, 2294089575287710984, 220132629099295901408, 22751391952803426496488, 2519687900505935894639088, 297684761086123702744203918
Offset: 1
For n = 4 there are A276449(4) = 4 1-orbits, represented by
+ o o + o + o o o o + o o o o o
o o o o o o o + + o o o o + + o
o o o o + o o o o o o + o + + o
+ o o + o o + o o + o o o o o o .
A276451(4) = 12 2-orbits: one of them is
+ o + o o o o +
o o o o + o o o
o o o o o o o +
o + o + + o o o ,
and one can take the first one as representative.
A276452(4) = 448 4-orbits: one of them is represented by
+ + + +
o o o o
o o o o
o o o o .
The complete orbit structure for n=4 is 1^4 2^12 4^448, see A276449(4) = 4, A276451(4) = 12, A276452(4) = 448.
a(4) = 448 + 12 + 4 = 464.
A014062(4) = 448*4 + 12*2 + 4*1 = 1820.
-
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4];g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4 + (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2 + f@ n, {n, 17}] (* Michael De Vlieger, Sep 12 2016 *)
-
from math import comb as binomial
for j in range(1, 20):
t = binomial(j * j, j)
i = j // 2
if j % 2 == 0:
d = binomial(2 * i * i, i)
else:
d = binomial(2 * i * (i + 1), i)
a = (t - d) // 4
if j % 4 == 0:
c = binomial((j * j // 4), (j // 4))
elif j % 4 == 1:
c = binomial(((j - 1) // 2) * ((j - 1) // 2 + 1), ((j - 1) // 4))
else:
c = 0
b = (d - c) // 2
print(str(j) + " " + str(a + b + c))
A276451
Number of 2-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
Original entry on oeis.org
0, 1, 2, 12, 30, 408, 1012, 17920, 45600, 1059380, 2730756, 78115884, 203235032, 6917206576, 18113945256, 714851008512, 1881039165696, 84449819514060, 223049005408900, 11225502116862880, 29736777118603962, 1658138369930988088, 4403069737450280832
Offset: 1
n = 4: one of the two 2-orbits is (o white, + black)
+ o + o o o o +
o o o o + o o o
o o o o o o o +
o + o + + o o o,
and one can take the first one as a representative.
For n = 3 there are a(3) = 2 2-orbits, represented by
+ o o o o o
o + o and + + +
o o + o o o.
The orbit structure for n=3 is 1^0 2^2 4^20; see A276449(3) = 0, a(3) = 2, A276452(3) = 20.
For the 12 2-orbits for n=4, see the representatives given in the link.
-
Table[(Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4])/2, {n, 23}] (* Michael De Vlieger, Sep 07 2016 *)
-
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
# main program
for j in range(101):
i = j/2
if j%2==0:
b = nCr(2*i*i,i)
else:
b = nCr(2*i*(i+1),i)
if j%4==0:
c = nCr((j*j/4),(j/4))
elif j%4==1:
c = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
else:
c = 0
print(str(j)+" "+str((b-c)/2))
A276452
Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
Original entry on oeis.org
0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
Offset: 1
a(2) = 1: the 4-orbit is
+ + o + o o + o
o o o + + + + o ,
and one can take the first one as representative.
For n = 3 there are a(3) = 20 4-orbits, represented by
+ + + + + o + + o + + o + + o
o o o + o o o + o o o + o o o
o o o o o o o o o o o o + o o
--------------------------------------
+ + o + + o + o + + o + + o +
o o o o o o + o o o + o o o o
o + o o o + o o o o o o + o o
--------------------------------------
+ o + + o o + o o + o o + o o
o o o + + o + o + + o o + o o
o + o o o o o o o o + o o o +
--------------------------------------
+ o o + o o + o o o + o o + o
o + + o + o o o + + + o + o +
o o o o + o o + o o o o o o o .
--------------------------------------
The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
-
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
-
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
# main program
for j in range(101):
a = nCr(j*j,j)
i = j/2
if j%2==0:
b = nCr(2*i*i,i)
else:
b = nCr(2*i*(i+1),i)
print(str(j)+" "+str((a-b)/4))
Showing 1-3 of 3 results.
Comments