cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A276454 a(n) = A276452(n) + A276451(n) + A276449(n).

Original entry on oeis.org

1, 2, 22, 464, 13302, 487152, 21475652, 1106550392, 65221981530, 4327577893800, 319187492622012, 25904823495240144, 2294089575287710984, 220132629099295901408, 22751391952803426496488, 2519687900505935894639088, 297684761086123702744203918
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence {a(n)} gives the number of all orbits under C_4 of 2-colored n X n square grids with n squares of one color.
See A054772(n, k) for the table of these total C_4 orbit numbers for 2-colored grids with any number k from {0,1,...,n^2} of squares of one color. - Wolfdieter Lang, Oct 02 2016

Examples

			For n = 4 there are A276449(4) = 4 1-orbits, represented by
   + o o +   o + o o   o o + o   o o o o
   o o o o   o o o +   + o o o   o + + o
   o o o o   + o o o   o o o +   o + + o
   + o o +   o o + o   o + o o   o o o o  .
A276451(4) = 12 2-orbits: one of them is
   + o + o   o o o +
   o o o o   + o o o
   o o o o   o o o +
   o + o +   + o o o  ,
and one can take the first one as representative.
A276452(4) = 448 4-orbits: one of them is represented by
   + + + +
   o o o o
   o o o o
   o o o o .
The complete orbit structure for n=4 is 1^4 2^12 4^448, see A276449(4) = 4, A276451(4) = 12, A276452(4) = 448.
a(4) = 448 + 12 + 4 = 464.
A014062(4) = 448*4 + 12*2 + 4*1 = 1820.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4];g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4 + (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2 + f@ n, {n, 17}] (* Michael De Vlieger, Sep 12 2016 *)
  • Python
    from math import comb as binomial
    for j in range(1, 20):
        t = binomial(j * j, j)
        i = j // 2
        if j % 2 == 0:
            d = binomial(2 * i * i, i)
        else:
            d = binomial(2 * i * (i + 1), i)
        a = (t - d) // 4
        if j % 4 == 0:
            c = binomial((j * j // 4), (j // 4))
        elif j % 4 == 1:
            c = binomial(((j - 1) // 2) * ((j - 1) // 2 + 1), ((j - 1) // 4))
        else:
            c = 0
        b = (d - c) // 2
        print(str(j) + " " + str(a + b + c))

Formula

a(n) = A276452(n) + A276451(n) + A276449(n) for n = 1, 2, 3, ...,
A014062(n) = A276452(n)*4 + A276451(n)*2 + A276449(n).
a(n) = A054772(n, 2), n >= 1. - Wolfdieter Lang, Oct 02 2016

Extensions

Edited by Wolfdieter Lang, Oct 02 2016

A276451 Number of 2-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 2, 12, 30, 408, 1012, 17920, 45600, 1059380, 2730756, 78115884, 203235032, 6917206576, 18113945256, 714851008512, 1881039165696, 84449819514060, 223049005408900, 11225502116862880, 29736777118603962, 1658138369930988088, 4403069737450280832
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence a(n) gives the number of 2-orbits of such 2-color boards with n squares of one color under C_4.

Examples

			n = 4: one of the two 2-orbits is (o white, + black)
+ o + o   o o o +
o o o o   + o o o
o o o o   o o o +
o + o +   + o o o,
and one can take the first one as a representative.
For n = 3 there are a(3) = 2 2-orbits, represented by
+ o o       o o o
o + o  and  + + +
o o +       o o o.
The orbit structure for n=3 is 1^0 2^2 4^20; see A276449(3) = 0, a(3) = 2, A276452(3) = 20.
For the 12 2-orbits for n=4, see the representatives given in the link.
		

Crossrefs

Programs

  • Mathematica
    Table[(Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4])/2, {n, 23}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        if j%4==0:
            c = nCr((j*j/4),(j/4))
        elif j%4==1:
            c = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
        else:
            c = 0
        print(str(j)+" "+str((b-c)/2))

Formula

a(n) = (binomial(2*i*i,i) - A276449(n))/2, for n = 2*i.
a(n) = (binomial(2*i*(i+1),i) - A276449(n))/2, for n = 2*i+1.

Extensions

Edited: Wolfdieter Lang, Oct 02 2016

A276452 Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
Offset: 1

Views

Author

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449. The present sequence a(n) gives the number of 4-orbits under C_4 of such 2-colored n X n grids with n squares of one color.

Examples

			a(2) = 1: the 4-orbit is
+ +   o +   o o   + o
o o   o +   + +   + o  ,
and one can take the first one as representative.
For n = 3 there are a(3) = 20 4-orbits, represented by
+ + +   + + o   + + o   + + o   + + o
o o o   + o o   o + o   o o +   o o o
o o o   o o o   o o o   o o o   + o o
--------------------------------------
+ + o   + + o   + o +   + o +   + o +
o o o   o o o   + o o   o + o   o o o
o + o   o o +   o o o   o o o   + o o
--------------------------------------
+ o +   + o o   + o o   + o o   + o o
o o o   + + o   + o +   + o o   + o o
o + o   o o o   o o o   o + o   o o +
--------------------------------------
+ o o   + o o   + o o   o + o   o + o
o + +   o + o   o o +   + + o   + o +
o o o   o + o   o + o   o o o   o o o .
--------------------------------------
The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        a = nCr(j*j,j)
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        print(str(j)+" "+str((a-b)/4))

Formula

a(n) = (A014062(n) - A276451(n)*2 - A276449(n))/4 for n = 1, 2, 3, ...
Showing 1-3 of 3 results.