cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jiangshan Sun

Jiangshan Sun's wiki page.

Jiangshan Sun has authored 3 sequences.

A276451 Number of 2-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.

Original entry on oeis.org

0, 1, 2, 12, 30, 408, 1012, 17920, 45600, 1059380, 2730756, 78115884, 203235032, 6917206576, 18113945256, 714851008512, 1881039165696, 84449819514060, 223049005408900, 11225502116862880, 29736777118603962, 1658138369930988088, 4403069737450280832
Offset: 1

Keywords

Comments

For a definition and examples of this problem see the comment section of A276449.
The present sequence a(n) gives the number of 2-orbits of such 2-color boards with n squares of one color under C_4.

Examples

			n = 4: one of the two 2-orbits is (o white, + black)
+ o + o   o o o +
o o o o   + o o o
o o o o   o o o +
o + o +   + o o o,
and one can take the first one as a representative.
For n = 3 there are a(3) = 2 2-orbits, represented by
+ o o       o o o
o + o  and  + + +
o o +       o o o.
The orbit structure for n=3 is 1^0 2^2 4^20; see A276449(3) = 0, a(3) = 2, A276452(3) = 20.
For the 12 2-orbits for n=4, see the representatives given in the link.
		

Crossrefs

Programs

  • Mathematica
    Table[(Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4])/2, {n, 23}] (* Michael De Vlieger, Sep 07 2016 *)
  • Python
    import math
    def nCr(n,r):
        f = math.factorial
        return f(n) / f(r) / f(n-r)
    # main program
    for j in range(101):
        i = j/2
        if j%2==0:
            b = nCr(2*i*i,i)
        else:
            b = nCr(2*i*(i+1),i)
        if j%4==0:
            c = nCr((j*j/4),(j/4))
        elif j%4==1:
            c = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
        else:
            c = 0
        print(str(j)+" "+str((b-c)/2))

Formula

a(n) = (binomial(2*i*i,i) - A276449(n))/2, for n = 2*i.
a(n) = (binomial(2*i*(i+1),i) - A276449(n))/2, for n = 2*i+1.

Extensions

Edited: Wolfdieter Lang, Oct 02 2016

A273916 The Bingo-4 problem: minimal number of stones that must be placed on an infinite square grid to produce n groups of exactly 4 stones each. Groups consist of adjacent stones in a horizontal, vertical or diagonal line.

Original entry on oeis.org

0, 4, 7, 9, 11, 12, 12, 14, 15, 16, 16, 18, 19, 20, 22, 24
Offset: 0

Keywords

Comments

You are permitted to put 5 or more adjacent stones in a line, but cannot count them as a group.
Each pair of stones has at most one group that counts going through them. - David A. Corneth, Aug 01 2016
a(n) >= n and a(n+m) <= a(n) + a(m), e.g., a(16) <= a(10) + a(6) = 28. Placing stones in a 4 X k rectangular array shows that a(3k) <= 4(k+2). Fekete's subadditive lemma shows that 1 <= lim_{n->oo} a(n)/n <= 4/3 exists. - Chai Wah Wu, Jul 31 2016
Limit_{n->oo} a(n)/n = 1. See arXiv link. - Chai Wah Wu, Aug 25 2016

Examples

			From _M. F. Hasler_, Jul 30 2016: (Start)
One can get n=3 groups using a(3) = 9 stones (O) as follows:
   O O O O     The 3 groups are:
   . O O .     (1) the first line,
   . O . .     (2) the second column,
   O O . .     (3) the antidiagonal.
See the link for more examples. (End)
		

Crossrefs

See also the 4-trees-in-a-row orchard problem, A006065.

Extensions

Edited by N. J. A. Sloane, Jul 29 2016

A273889 a(n) = ((4n-3)!! + (4n-2)!!) / (4n-1).

Original entry on oeis.org

1, 9, 435, 52017, 11592315, 4152126825, 2182133628675, 1581940549814625, 1512952069890336075, 1845586177840605209625, 2796710279417971723681875, 5153962250373844341910100625, 11351091844757135191108560046875, 29444207228221006416048397134215625, 88848552445321896564985597922269171875
Offset: 1

Keywords

Examples

			a(1) = (1 + 2)/3 = 1;
a(2) = (1*3*5 + 2*4*6)/7 = 9;
a(3) = (1*3*5*7*9 + 2*4*6*8*10)/11 = 435.
		

Crossrefs

Programs

  • Mathematica
    B[n_, k_] := (Product[k (i - 1) + 1, {i, 2 n - 1}] + Product[k (i - 1) + 2, {i, 2 n - 1}])/(2 k (n - 1) + 3); Table[B[n, 2], {n, 15}] (* Michael De Vlieger, Jun 10 2016 *)
    Table[((4n-3)!!+(4n-2)!!)/(4n-1),{n,20}] (* Harvey P. Dale, Mar 08 2018 *)
  • Python
    for n in range(1,101):
        if n == 1:
            a = 1
            b = 2
        else:
            a = a*(4*n-5)*(4*n-3)
            b = b*(4*n-4)*(4*n-2)
        c = (a+b)/(4*n-1)
        print(str(n)+" "+str(c))