Jason Y.S. Chiu has authored 6 sequences.
A276451
Number of 2-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
Original entry on oeis.org
0, 1, 2, 12, 30, 408, 1012, 17920, 45600, 1059380, 2730756, 78115884, 203235032, 6917206576, 18113945256, 714851008512, 1881039165696, 84449819514060, 223049005408900, 11225502116862880, 29736777118603962, 1658138369930988088, 4403069737450280832
Offset: 1
n = 4: one of the two 2-orbits is (o white, + black)
+ o + o o o o +
o o o o + o o o
o o o o o o o +
o + o + + o o o,
and one can take the first one as a representative.
For n = 3 there are a(3) = 2 2-orbits, represented by
+ o o o o o
o + o and + + +
o o + o o o.
The orbit structure for n=3 is 1^0 2^2 4^20; see A276449(3) = 0, a(3) = 2, A276452(3) = 20.
For the 12 2-orbits for n=4, see the representatives given in the link.
-
Table[(Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4])/2, {n, 23}] (* Michael De Vlieger, Sep 07 2016 *)
-
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
# main program
for j in range(101):
i = j/2
if j%2==0:
b = nCr(2*i*i,i)
else:
b = nCr(2*i*(i+1),i)
if j%4==0:
c = nCr((j*j/4),(j/4))
elif j%4==1:
c = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
else:
c = 0
print(str(j)+" "+str((b-c)/2))
Original entry on oeis.org
1, 2, 22, 464, 13302, 487152, 21475652, 1106550392, 65221981530, 4327577893800, 319187492622012, 25904823495240144, 2294089575287710984, 220132629099295901408, 22751391952803426496488, 2519687900505935894639088, 297684761086123702744203918
Offset: 1
For n = 4 there are A276449(4) = 4 1-orbits, represented by
+ o o + o + o o o o + o o o o o
o o o o o o o + + o o o o + + o
o o o o + o o o o o o + o + + o
+ o o + o o + o o + o o o o o o .
A276451(4) = 12 2-orbits: one of them is
+ o + o o o o +
o o o o + o o o
o o o o o o o +
o + o + + o o o ,
and one can take the first one as representative.
A276452(4) = 448 4-orbits: one of them is represented by
+ + + +
o o o o
o o o o
o o o o .
The complete orbit structure for n=4 is 1^4 2^12 4^448, see A276449(4) = 4, A276451(4) = 12, A276452(4) = 448.
a(4) = 448 + 12 + 4 = 464.
A014062(4) = 448*4 + 12*2 + 4*1 = 1820.
-
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4];g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4 + (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2 + f@ n, {n, 17}] (* Michael De Vlieger, Sep 12 2016 *)
-
from math import comb as binomial
for j in range(1, 20):
t = binomial(j * j, j)
i = j // 2
if j % 2 == 0:
d = binomial(2 * i * i, i)
else:
d = binomial(2 * i * (i + 1), i)
a = (t - d) // 4
if j % 4 == 0:
c = binomial((j * j // 4), (j // 4))
elif j % 4 == 1:
c = binomial(((j - 1) // 2) * ((j - 1) // 2 + 1), ((j - 1) // 4))
else:
c = 0
b = (d - c) // 2
print(str(j) + " " + str(a + b + c))
A276452
Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
Original entry on oeis.org
0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
Offset: 1
a(2) = 1: the 4-orbit is
+ + o + o o + o
o o o + + + + o ,
and one can take the first one as representative.
For n = 3 there are a(3) = 20 4-orbits, represented by
+ + + + + o + + o + + o + + o
o o o + o o o + o o o + o o o
o o o o o o o o o o o o + o o
--------------------------------------
+ + o + + o + o + + o + + o +
o o o o o o + o o o + o o o o
o + o o o + o o o o o o + o o
--------------------------------------
+ o + + o o + o o + o o + o o
o o o + + o + o + + o o + o o
o + o o o o o o o o + o o o +
--------------------------------------
+ o o + o o + o o o + o o + o
o + + o + o o o + + + o + o +
o o o o + o o + o o o o o o o .
--------------------------------------
The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
-
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
-
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
# main program
for j in range(101):
a = nCr(j*j,j)
i = j/2
if j%2==0:
b = nCr(2*i*i,i)
else:
b = nCr(2*i*(i+1),i)
print(str(j)+" "+str((a-b)/4))
A276449
Number of 1-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
Original entry on oeis.org
1, 0, 0, 4, 6, 0, 0, 120, 190, 0, 0, 7140, 11480, 0, 0, 635376, 1028790, 0, 0, 75287520, 122391522, 0, 0, 11143364232, 18161699556, 0, 0, 1978369382080, 3230129794320, 0, 0, 409663695276000, 669741609663270, 0, 0, 96930293990660064, 158625578809472060
Offset: 1
a(4) = 4, the arrangements are as follows:
+ o o + o + o o o o + o o o o o
o o o o o o o + + o o o o + + o
o o o o + o o o o o o + o + + o
+ o o + o o + o o + o o o o o o
a(5) = 6, the arrangements are as follows:
+ o o o + o + o o o o o + o o
o o o o o o o o o + o o o o o
o o + o o o o + o o + o + o +
o o o o o + o o o o o o o o o
+ o o o + o o o + o o o + o o
and
o o o + o o o o o o o o o o o
+ o o o o o + o + o o O + o o
O o + o o o o + o o o + + + o
o o o o + o + O + O o o + o o
o + o o o o o o o o o o o o o
reformatted - _Wolfdieter Lang_, Oct 02 2016
-
seq(op([binomial(2*i*(2*i+1),i),0,0,binomial(4*(i+1)^2,i+1)]),i=0..30); # Robert Israel, Sep 05 2016
-
Table[If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4], {n, 37}] (* Michael De Vlieger, Sep 07 2016 *)
-
import math
def nCr(n,r):
f = math.factorial
return f(n) / f(r) / f(n-r)
# main program
for j in range(101):
if j%4 == 0:
a = nCr((j*j/4),(j/4))
elif j%4 == 1:
a = nCr(((j-1)/2)*((j-1)/2+1),((j-1)/4))
else:
a = 0
print(str(j)+" "+str(a))
Edited: New name. Old name as a comment. Text substantially changed.
Wolfdieter Lang, Oct 02 2016
A273916
The Bingo-4 problem: minimal number of stones that must be placed on an infinite square grid to produce n groups of exactly 4 stones each. Groups consist of adjacent stones in a horizontal, vertical or diagonal line.
Original entry on oeis.org
0, 4, 7, 9, 11, 12, 12, 14, 15, 16, 16, 18, 19, 20, 22, 24
Offset: 0
From _M. F. Hasler_, Jul 30 2016: (Start)
One can get n=3 groups using a(3) = 9 stones (O) as follows:
O O O O The 3 groups are:
. O O . (1) the first line,
. O . . (2) the second column,
O O . . (3) the antidiagonal.
See the link for more examples. (End)
See also the 4-trees-in-a-row orchard problem,
A006065.
A273889
a(n) = ((4n-3)!! + (4n-2)!!) / (4n-1).
Original entry on oeis.org
1, 9, 435, 52017, 11592315, 4152126825, 2182133628675, 1581940549814625, 1512952069890336075, 1845586177840605209625, 2796710279417971723681875, 5153962250373844341910100625, 11351091844757135191108560046875, 29444207228221006416048397134215625, 88848552445321896564985597922269171875
Offset: 1
a(1) = (1 + 2)/3 = 1;
a(2) = (1*3*5 + 2*4*6)/7 = 9;
a(3) = (1*3*5*7*9 + 2*4*6*8*10)/11 = 435.
-
B[n_, k_] := (Product[k (i - 1) + 1, {i, 2 n - 1}] + Product[k (i - 1) + 2, {i, 2 n - 1}])/(2 k (n - 1) + 3); Table[B[n, 2], {n, 15}] (* Michael De Vlieger, Jun 10 2016 *)
Table[((4n-3)!!+(4n-2)!!)/(4n-1),{n,20}] (* Harvey P. Dale, Mar 08 2018 *)
-
for n in range(1,101):
if n == 1:
a = 1
b = 2
else:
a = a*(4*n-5)*(4*n-3)
b = b*(4*n-4)*(4*n-2)
c = (a+b)/(4*n-1)
print(str(n)+" "+str(c))
Comments