cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A008805 Triangular numbers repeated.

Original entry on oeis.org

1, 1, 3, 3, 6, 6, 10, 10, 15, 15, 21, 21, 28, 28, 36, 36, 45, 45, 55, 55, 66, 66, 78, 78, 91, 91, 105, 105, 120, 120, 136, 136, 153, 153, 171, 171, 190, 190, 210, 210, 231, 231, 253, 253, 276, 276, 300, 300, 325, 325, 351, 351, 378, 378, 406, 406, 435, 435
Offset: 0

Views

Author

Keywords

Comments

Number of choices for nonnegative integers x,y,z such that x and y are even and x + y + z = n.
Diagonal sums of A002260, when arranged as a number triangle. - Paul Barry, Feb 28 2003
a(n) = number of partitions of n+4 such that the differences between greatest and smallest parts are 2: a(n-4) = A097364(n,2) for n>3. - Reinhard Zumkeller, Aug 09 2004
For n >= i, i=4,5, a(n-i) is the number of incongruent two-color bracelets of n beads, i from them are black (cf. A005232, A032279), having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
Prefixing A008805 by 0,0,0,0 gives the sequence c(0), c(1), ... defined by c(n)=number of (w,x,y) such that w = 2x+2y, where w,x,y are all in {1,...,n}; see A211422. - Clark Kimberling, Apr 15 2012
Partial sums of positive terms of A142150. - Reinhard Zumkeller, Jul 07 2012
The sum of the first parts of the nondecreasing partitions of n+2 into exactly two parts, n >= 0. - Wesley Ivan Hurt, Jun 08 2013
Number of the distinct symmetric pentagons in a regular n-gon, see illustration for some small n in links. - Kival Ngaokrajang, Jun 25 2013
a(n) is the number of nonnegative integer solutions to the equation x + y + z = n such that x + y <= z. For example, a(4) = 6 because we have 0+0+4 = 0+1+3 = 0+2+2 = 1+0+3 = 1+1+2 = 2+0+2. - Geoffrey Critzer, Jul 09 2013
a(n) is the number of distinct opening moves in n X n tic-tac-toe. - I. J. Kennedy, Sep 04 2013
a(n) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the T2 X t2 vibronic perturbation matrix, H(Q) (cf. Opalka & Domcke). - Bradley Klee, Jul 20 2015
a(n-1) also gives the number of D_4 (dihedral group of order 4) orbits of an n X n square grid with squares coming in either of two colors and only one square has one of the colors. - Wolfdieter Lang, Oct 03 2016
Also, this sequence is the third column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018
In an n-person symmetric matching pennies game (a zero-sum normal-form game) with n > 2 symmetric and indistinguishable players, each with two strategies (viz. heads or tails), a(n-3) is the number of distinct subsets of players that must play the same strategy to avoid incurring losses (single pure Nash equilibrium in the reduced game). The total number of distinct partitions is A000217(n-1). - Ambrosio Valencia-Romero, Apr 17 2022
a(n) is the number of connected bipartite graphs with n+1 edges and a stable set of cardinality 2. - Christian Barrientos, Jun 15 2022
a(n) is the number of 132-avoiding odd Grassmannian permutations of size n+2. - Juan B. Gil, Mar 10 2023
Consider a regular n-gon with all diagonals drawn. Define a "layer" to be the set of all regions sharing an edge with the exterior. Removing a layer creates another layer. Count the layers, removing them until none remain. The number of layers is a(n-2). See illustration. - Christopher Scussel, Nov 07 2023

Examples

			a(5) = 6, since (5) + 2 = 7 has three nondecreasing partitions with exactly 2 parts: (1,6),(2,5),(3,4). The sum of the first parts of these partitions = 1 + 2 + 3 = 6. - _Wesley Ivan Hurt_, Jun 08 2013
		

References

  • H. D. Brunk, An Introduction to Mathematical Statistics, Ginn, Boston, 1960; p. 360.

Crossrefs

Cf. A000217, A002260, A002620, A006918 (partial sums), A054252, A135276, A142150, A158920 (binomial trans.).

Programs

  • GAP
    List([0..60], n-> (2*n +3 +(-1)^n)*(2*n +7 +(-1)^n)/32); # G. C. Greubel, Sep 12 2019
    
  • Haskell
    import Data.List (transpose)
    a008805 = a000217 . (`div` 2) . (+ 1)
    a008805_list = drop 2 $ concat $ transpose [a000217_list, a000217_list]
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [(2*n+3+(-1)^n)*(2*n+7+(-1)^n)/32 : n in [0..50]]; // Wesley Ivan Hurt, Apr 22 2015
    
  • Maple
    A008805:=n->(2*n+3+(-1)^n)*(2*n+7+(-1)^n)/32: seq(A008805(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2015
  • Mathematica
    CoefficientList[Series[1/(1-x^2)^2/(1-x), {x, 0, 50}], x]
    Table[Binomial[Floor[n/2] + 2, 2], {n, 0, 57}] (* Michael De Vlieger, Oct 03 2016 *)
  • PARI
    a(n)=(n\2+2)*(n\2+1)/2
    
  • Python
    def A008805(n): return (m:=(n>>1)+1)*(m+1)>>1 # Chai Wah Wu, Oct 20 2023
  • Sage
    [(2*n +3 +(-1)^n)*(2*n +7 +(-1)^n)/32 for n in (0..60)] # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: 1/((1-x)*(1-x^2)^2) = 1/((1+x)^2*(1-x)^3).
E.g.f.: (exp(x)*(2*x^2 +12*x+ 11) - exp(-x)*(2*x -5))/16.
a(-n) = a(-5+n).
a(n) = binomial(floor(n/2)+2, 2). - Vladimir Shevelev, May 03 2011
From Paul Barry, May 31 2003: (Start)
a(n) = ((2*n +5)*(-1)^n + (2*n^2 +10*n +11))/16.
a(n) = Sum_{k=0..n} ((k+2)*(1+(-1)^k))/4. (End)
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..n} floor((k+2)/2)*(1-(-1)^(n+k-1))/2.
a(n) = Sum_{k=0..floor(n/2)} floor((n-2k+2)/2). (End)
A signed version is given by Sum_{k=0..n} (-1)^k*floor(k^2/4). - Paul Barry, Aug 19 2003
a(n) = A108299(n-2,n)*(-1)^floor((n+1)/2) for n>1. - Reinhard Zumkeller, Jun 01 2005
a(n) = A004125(n+3) - A049798(n+2). - Carl Najafi, Jan 31 2013
a(n) = Sum_{i=1..floor((n+2)/2)} i. - Wesley Ivan Hurt, Jun 08 2013
a(n) = (1/2)*floor((n+2)/2)*(floor((n+2)/2)+1). - Wesley Ivan Hurt, Jun 08 2013
From Wesley Ivan Hurt, Apr 22 2015: (Start)
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
a(n) = (2*n +3 +(-1)^n)*(2*n +7 +(-1)^n)/32. (End)
a(n-1) = A054252(n,1) = A054252(n^2-1), n >= 1. See a Oct 03 2016 comment above. - Wolfdieter Lang, Oct 03 2016
a(n) = A000217(A008619(n)). - Guenther Schrack, Sep 12 2018
From Ambrosio Valencia-Romero, Apr 17 2022: (Start)
a(n) = a(n-1) if n odd, a(n) = a(n-1) + (n+2)/2 if n is even, for n > 0, a(0) = 1.
a(n) = (n+1)*(n+3)/8 if n odd, a(n) = (n+2)*(n+4)/8 if n is even, for n >= 0.
a(n) = A002620(n+2) - a(n-1), for n > 0, a(0) = 1.
a(n) = A142150(n+2) + a(n-1), for n > 0, a(0) = 1.
a(n) = A000217(n+3)/2 - A135276(n+3)/2. (End)

A014409 Number of inequivalent ways (mod D_4) a pair of checkers can be placed on an n X n board.

Original entry on oeis.org

0, 2, 8, 21, 49, 93, 171, 278, 446, 660, 970, 1347, 1863, 2471, 3269, 4188, 5356, 6678, 8316, 10145, 12365, 14817, 17743, 20946, 24714, 28808, 33566, 38703, 44611, 50955, 58185, 65912, 74648, 83946, 94384, 105453, 117801, 130853, 145331, 160590, 177430, 195132
Offset: 1

Views

Author

Borghard, William (bogey(AT)hostare.att.com)

Keywords

References

  • Computed by Fred Hallden.

Crossrefs

Programs

  • Magma
    [(2*n^4+14*n^2-12*n-1-(-1)^n*(2*n^2-4*n-1))/32 : n in [1..60]]; // Wesley Ivan Hurt, Dec 30 2023
  • Mathematica
    LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 2, 8, 21, 49, 93, 171, 278}, 40]
    CoefficientList[Series[- x (x^5 + x^4 + 3 x^3 + x^2 + 4 x + 2)/((x - 1)^5 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
  • PARI
    a(n)=if(n%2, n^4 + 8*n^2 - 8*n - 1, n^4 + 6*n^2 - 4*n)/16  \\ Charles R Greathouse IV, Feb 09 2017
    

Formula

a(2*n) = n/2*(2*n^3 + 3*n - 1); a(2*n+1) = n/2*(2*n^3 + 4*n^2 + 7*n + 3).
a(0)=0, a(1)=2, a(2)=8, a(3)=21, a(4)=49, a(5)=93, a(6)=171, a(7)=278, a(n)=2*a(n-1)+2*a(n-2)-6*a(n-3)+0*a(n-4)+6*a(n-5)-2*a(n-6)- 2*a(n-7)+ a(n-8). - Harvey P. Dale, May 06 2012
G.f.: -x^2*(x^5+x^4+3*x^3+x^2+4*x+2) / ((x-1)^5*(x+1)^3). - Colin Barker, Jul 11 2013
From James Stein, May 22 2014: (Start)
For odd n: a(n) = (n^4 + 8*n^2 - 8*n - 1)/16;
For even n: a(n) = n*(n^3 + 6*n - 4)/16. (End)
a(n) = A054252(n, 2), n >= 0. - Wolfdieter Lang, Oct 03 2016
E.g.f.: (x*(1 + 13*x + 6*x^2 + x^3)*cosh(x) + (-1 + 3*x + 15*x^2 + 6*x^3 + x^4)*sinh(x))/16. - Stefano Spezia, Apr 14 2022
a(n) = (2*n^4+14*n^2-12*n-1-(-1)^n*(2*n^2-4*n-1))/32. - Wesley Ivan Hurt, Dec 30 2023

Extensions

More terms and formula from Hugo van der Sanden
More terms from Colin Barker, Jul 11 2013

A236679 Number T(n,k) of equivalence classes of ways of placing k 2 X 2 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=2, 0<=k<=floor(n/2)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 2, 1, 1, 3, 13, 20, 14, 1, 6, 37, 138, 277, 273, 143, 39, 7, 1, 1, 6, 75, 505, 2154, 5335, 7855, 6472, 2756, 459, 1, 10, 147, 1547, 10855, 50021, 153311, 311552, 416825, 361426, 200996, 71654, 16419, 2363, 211, 11, 1, 1, 10, 246, 3759, 39926, 291171
Offset: 2

Views

Author

Keywords

Comments

Changing the offset from 2 to 1, this is also the sequence: "Triangle read by rows: T(n,k) is the number of nonequivalent ways to place k non-attacking kings on an n X n board." (For if each king is represented by a 2 X 2 tile with the king in the upper left corner, the kings do not attack each other.) For example, with offset 1, T(4,3) = 20 because there are 20 nonequivalent ways to place 3 kings on a 4 X 4 chessboard so that no king threatens any other. - Heinrich Ludwig and N. J. A. Sloane, Dec 21 2016
It appears that rows 2n and 2n-1 both contain n^2 + 1 entries. Rotations and reflections of placements are not counted. If they are to be counted, see A193580. - Heinrich Ludwig, Dec 11 2016

Examples

			T(4,2) = 4 because the number of equivalence classes of ways of placing 2 2 X 2 square tiles in a 4 X 4 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is:
._______        _______        _______        _______
| . | . |      | . |___|      | . |   |      |_______|
|___|___|      |___| . |      |___|___|      | . | . |
|       |      |   |___|      |   | . |      |___|___|
|_______|      |_______|      |___|___|      |_______|
The first 6 rows of T(n,k) are:
.\ k  0    1    2    3    4    5    6    7    8    9
n
2     1    1
3     1    1
4     1    3    4    2    1
5     1    3   13   20   14
6     1    6   37  138  277  273  143   39    7    1
7     1    6   75  505 2154 5335 7855 6472 2756  459
		

Crossrefs

Row sums give A275869.
Diagonal T(n,n) is A279117.
Cf. A193580.

Formula

It appears that:
T(n,0) = 1, n>= 2
T(n,1) = (floor((n-2)/2)+1)*(floor((n-2)/2+2))/2, n >= 2
T(c+2*2,2) = A131474(c+1)*(2-1) + A000217(c+1)*floor(2^2/4) + A014409(c+2), 0 <= c < 2, c even
T(c+2*2,2) = A131474(c+1)*(2-1) + A000217(c+1)*floor((2-1)(2-3)/4) + A014409(c+2), 0 <= c < 2, c odd
T(c+2*2,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((2-c-1)/2) + A131941(c+1)*floor((2-c)/2)) + S(c+1,3c+2,3), 0 <= c < 2 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1

Extensions

More terms from Heinrich Ludwig, Dec 11 2016 (The former entry A279118 from Heinrich Ludwig was merged into this entry by N. J. A. Sloane, Dec 21 2016)

A082963 Number of n X n 0-1 matrices with half 1's and half 0's (rounded up/down if odd).

Original entry on oeis.org

1, 1, 2, 23, 1674, 652048, 1134460910, 7900674292378, 229078019084673798, 26549036304190836144544, 12611418068196090318131968752, 23955745839516317585042064530077352, 185026624806098273753009169783707528668060
Offset: 0

Views

Author

Vladeta Jovovic, May 27 2003

Keywords

Crossrefs

Programs

  • PARI
    C(n,f)={(f(1)^(n^2) + 2*f(1)^((n%2)*n)*f(2)^((n\2)*n) + 2*f(1)^n*f(2)^binomial(n,2) + f(1)^(n%2)*f(2)^(n^2\2) + 2*f(1)^(n%2)*f(4)^(floor(n/2)*ceil(n/2)))/8}
    a(n)={polcoef(C(n, k->1 + x^k), n^2\2)} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = A054252(n, floor(n^2/2)).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Feb 01 2020

A054772 Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones, up to rotational symmetry.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 22, 34, 34, 22, 10, 3, 1, 1, 4, 32, 140, 464, 1092, 2016, 2860, 3238, 2860, 2016, 1092, 464, 140, 32, 4, 1, 1, 7, 78, 578, 3182, 13302, 44330, 120230, 270525, 510875, 817388, 1114548, 1300316, 1300316, 1114548, 817388
Offset: 0

Views

Author

Vladeta Jovovic, May 18 2000

Keywords

Comments

Row sums give A047937.
From Wolfdieter Lang, Oct 01 2016: (Start)
The formula is obtained from Pólya's counting theorem. See, e.g., the Harary-Palmer reference.
The cycle index for a square grid of n X n squares G(n), n >= 1, under the cyclic group C_4 is
(s[1]^(n^2)+s[2]^(n^2/2)+2*s[4]^(n^2/4))/4 if n is even,
s[1]*(s[1]^(n^2-1) + s[2]^((n^2-1)/2) + 2*s[4]^((n^2-1)/4))/4 if n is odd. (Numerate the squares from 1 .. n^2 and compute for the C_4 rotations the cycle structure of the permutation from the symmetric group S(n^2)).
The figure counting series is c(x) = 1+x for coloring, say black and white (in the matrix case binary entries).
Therefore the counting series is C(n,x) = G(n) with substitution s[2^j] = c(x^(2*j)) = 1 + x^(2^j) for j=0,1,2. Row n gives the coefficients of C(n,x) in rising (or falling) order. (End)
A pedantic note: One should not use 0,1 matrices for this T(n,k) model because 1 (also |) is not C_4 invariant. Square grids with coloring of the squares, say black and white, or central entries o and + are better suited. - Wolfdieter Lang, Oct 02 2016

Examples

			[1],[1,1],[1,1,2,1,1],[1,3,10,22,34,34,22,10,3,1],...;
There are 10 inequivalent 3 X 3 binary matrices with 2 ones, up to rotational symmetry:
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1]
[0 1 1] [1 0 1] [1 1 0] [0 1 0] [1 0 0]
-------
[0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1]
[0 1 0] [0 1 0] [1 0 0] [1 0 1] [0 0 0]
[0 0 1] [0 1 0] [0 0 1] [0 0 0] [1 0 0].
- reformatted. _Wolfdieter Lang_, Oct 01 2016
See a remark above: use o for 0 and + for 1.
n=3: Cycle index G(3) = s[1]*(s[1]^8 + s[2]^4 + 2*s[4]^2)/4. C(3,x) = (1+x)*((1+x)^8 + (1+x^2)^4 + 2*(1+x^4)^2)/4 = 1 + 3*x + 10*x^2 + 22*x^3 + 34*x^4 + 34*x^5 + 22*x^6 + 10*x^7 + 3*x^8 + x^9. - _Wolfdieter Lang_, Oct 01 2016
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6).

Crossrefs

Cf. A054252, columns k=0..4: A000012, A004652, A212714, A011863, A275799.

Formula

See the comment above: T(n,k) = [x^k]C(n,x), with the counting series C(n,x) obtained from the cycle index for the n X n grid under C_4 rotations G(n;s[1],s[2],s[4]) with s[2^j] = 1 + x^(2^j) for j=0,1,2. - Wolfdieter Lang, Oct 01 2016

A236560 Number T(n,k) of equivalence classes of ways of placing k 3 X 3 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=3, 0<=k<=floor(n/3)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 6, 2, 1, 1, 6, 21, 29, 14, 1, 6, 53, 161, 174, 1, 10, 111, 665, 1713, 1549, 608, 107, 11, 1, 1, 10, 201, 1961, 9973, 24267, 29437, 17438, 4756, 459
Offset: 3

Views

Author

Keywords

Comments

The first 8 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
3 1 1
4 1 1
5 1 3
6 1 3 6 2 1
7 1 6 21 29 14
8 1 6 53 161 174
9 1 10 111 665 1713 1549 608 107 11 1
10 1 10 201 1961 9973 24267 29437 17438 4756 459

Examples

			T(6,2) = 6 because the number of equivalence classes of ways of placing 2 3 X 3 square tiles in a 6 X 6 square under all symmetry operations of the square is 6. The portrayal of an example from each equivalence class is:
.___________      ___________      ___________
|     |     |    |     |_____|    |     |     |
|  .  |  .  |    |  .  |     |    |  .  |_____|
|_____|_____|    |_____|  .  |    |_____|     |
|           |    |     |_____|    |     |  .  |
|           |    |           |    |     |_____|
|___________|    |___________|    |_____|_____|
.
.___________      ___________      ___________
|     |     |    |_____ _____|    |_____      |
|  .  |     |    |     |     |    |     |_____|
|_____|_____|    |  .  |  .  |    |  .  |     |
|     |     |    |_____|_____|    |_____|  .  |
|     |  .  |    |           |    |     |_____|
|_____|_____|    |___________|    |_____|_____|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 3
T(n,1) = (floor((n-3)/2)+1)*(floor((n-3)/2+2))/2, n >= 3
T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor(3^2/4) + A014409(c+2), 0 <= c < 3, c even
T(c+2*3,2) = A131474(c+1)*(3-1) + A000217(c+1)*floor((3-1)(3-3)/4) + A014409(c+2), 0 <= c < 3, c odd
T(c+2*3,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((3-c-1)/2) + A131941(c+1)*floor((3-c)/2)) + S(c+1,3c+2,3), 0 <= c < 3 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2

A236757 Number T(n,k) of equivalence classes of ways of placing k 4 X 4 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=4, 0<=k<=floor(n/4)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 9, 3, 1, 1, 6, 29, 35, 14, 1, 10, 75, 209, 174, 1, 10, 147, 765, 1234, 1, 15, 270, 2340, 7639, 6169, 1893, 242, 17, 1, 1, 15, 438, 5806, 34342, 79821, 80722, 36569, 7106, 459
Offset: 4

Views

Author

Keywords

Comments

The first 10 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
4 1 1
5 1 1
6 1 3
7 1 3
8 1 6 9 3 1
9 1 6 29 35 14
10 1 10 75 209 174
11 1 10 147 765 1234
12 1 15 270 2340 7639 6169 1893 242 17 1
13 1 15 438 5806 34342 79821 80722 36569 7106 459

Examples

			T(8,3) = 3 because the number of equivalence classes of ways of placing 3 4 X 4 square tiles in an 8 X 8 square under all symmetry operations of the square is 3. The portrayal of an example from each equivalence class is:
._____________          _____________          _____________
|      |      |        |      |______|        |      |      |
|   .  |   .  |        |   .  |      |        |   .  |______|
|      |      |        |      |   .  |        |      |      |
|______|______|        |______|      |        |______|   .  |
|      |      |        |      |______|        |      |      |
|   .  |      |        |   .  |      |        |   .  |______|
|      |      |        |      |      |        |      |      |
|______|______|        |______|______|        |______|______|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 4
T(n,1) = (floor((n-4)/2)+1)*(floor((n-4)/2+2))/2, n >= 4
T(c+2*4,2) = A131474(c+1)*(4-1) + A000217(c+1)*floor(4^2/4) + A014409(c+2), 0 <= c < 4, c even
T(c+2*4,2) = A131474(c+1)*(4-1) + A000217(c+1)*floor((4-1)(4-3)/4) + A014409(c+2), 0 <= c < 4, c odd
T(c+2*4,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((4-c-1)/2) + A131941(c+1)*floor((4-c)/2)) + S(c+1,3c+2,3), 0 <= c < 4 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3

A236800 Number T(n,k) of equivalence classes of ways of placing k 5 X 5 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=5, 0<=k<=floor(n/5)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 12, 3, 1, 1, 10, 40, 44, 14, 1, 10, 97, 245, 174, 1, 15, 193, 925, 1234, 1, 15, 339, 2640, 6124, 1, 21, 555, 6617, 27074, 19336, 4785, 461, 23, 1
Offset: 5

Views

Author

Keywords

Comments

The first 11 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
5 1 1
6 1 1
7 1 3
8 1 3
9 1 6
10 1 6 12 3 1
11 1 10 40 44 14
12 1 10 97 245 174
13 1 15 193 925 1234
14 1 15 339 2640 6124
15 1 21 555 6617 27074 19336 4785 461 23 1

Examples

			T(10,3) = 3 because the number of equivalence classes of ways of placing 3 5 X 5 square tiles in an 10 X 10 square under all symmetry operations of the square is 3. The portrayal of an example from each equivalence class is:
._______________      _______________      _______________
|       |       |    |       |_______|    |       |       |
|       |       |    |       |       |    |       |_______|
|   .   |   .   |    |   .   |       |    |   .   |       |
|       |       |    |       |   .   |    |       |       |
|_______|_______|    |_______|       |    |_______|   .   |
|       |       |    |       |_______|    |       |       |
|       |       |    |       |       |    |       |_______|
|   .   |       |    |   .   |       |    |   .   |       |
|       |       |    |       |       |    |       |       |
|_______|_______|    |_______|_______|    |_______|_______|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 5
T(n,1) = (floor((n-5)/2)+1)*(floor((n-5)/2+2))/2, n >= 5
T(c+2*5,2) = A131474(c+1)*(5-1) + A000217(c+1)*floor(5^2/4) + A014409(c+2), 0 <= c < 5, c even
T(c+2*5,2) = A131474(c+1)*(5-1) + A000217(c+1)*floor((5-1)(5-3)/4) + A014409(c+2), 0 <= c < 5, c odd
T(c+2*5,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((5-c-1)/2) + A131941(c+1)*floor((5-c)/2)) + S(c+1,3c+2,3), 0 <= c < 5 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4

A236829 Number T(n,k) of equivalence classes of ways of placing k 6 X 6 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=6, 0<=k<=floor(n/6)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 16, 4, 1, 1, 10, 51, 50, 14, 1, 15, 125, 293, 174, 1, 15, 239, 1065, 1234, 1, 21, 423, 3075, 6124, 1, 21, 672, 7371, 23259, 1, 28, 1030, 16093, 81480, 51615, 10596, 808, 31, 1
Offset: 6

Views

Author

Keywords

Comments

The first 13 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
6 1 1
7 1 1
8 1 3
9 1 3
10 1 6
11 1 6
12 1 10 16 4 1
13 1 10 51 50 14
14 1 15 125 293 174
15 1 15 239 1065 1234
16 1 21 423 3075 6124
17 1 21 672 7371 23259
18 1 28 1030 16093 81480 51615 10596 808 31 1

Examples

			T(12,3) = 4 because the number of equivalence classes of ways of placing 3 6 X 6 square tiles in a 12 X 12 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is:
._________________          _________________
|        |        |        |        |________|
|        |        |        |        |        |
|    .   |    .   |        |    .   |        |
|        |        |        |        |    .   |
|        |        |        |        |        |
|________|________|        |________|        |
|        |        |        |        |________|
|        |        |        |        |        |
|    .   |        |        |    .   |        |
|        |        |        |        |        |
|        |        |        |        |        |
|________|________|        |________|________|
.
._________________          _________________
|        |        |        |        |        |
|        |________|        |        |        |
|    .   |        |        |    .   |________|
|        |        |        |        |        |
|        |    .   |        |        |        |
|________|        |        |________|    .   |
|        |        |        |        |        |
|        |________|        |        |        |
|    .   |        |        |    .   |________|
|        |        |        |        |        |
|        |        |        |        |        |
|________|________|        |________|________|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 6
T(n,1) = (floor((n-6)/2)+1)*(floor((n-6)/2+2))/2, n >= 6
T(c+2*6,2) = A131474(c+1)*(6-1) + A000217(c+1)*floor(6^2/4) + A014409(c+2), 0 <= c < 6, c even
T(c+2*6,2) = A131474(c+1)*(6-1) + A000217(c+1)*floor((6-1)(6-3)/4) + A014409(c+2), 0 <= c < 6, c odd
T(c+2*6,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((6-c-1)/2) + A131941(c+1)*floor((6-c)/2)) + S(c+1,3c+2,3), 0 <= c < 6 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5

A236865 Number T(n,k) of equivalence classes of ways of placing k 7 X 7 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=7, 0<=k<=floor(n/7)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 20, 4, 1, 1, 15, 65, 59, 14, 1, 15, 153, 329, 174, 1, 21, 295, 1225, 1234, 1, 21, 507, 3465, 6124, 1, 28, 810, 8358, 23259, 1, 28, 1214, 17710, 73204
Offset: 7

Views

Author

Keywords

Comments

The first 13 rows of T(n,k) are:
.\ k 0 1 2 3 4 5 6 7 8 9
n
7 1 1
8 1 1
9 1 3
10 1 3
11 1 6
12 1 6
13 1 10
14 1 10 20 4 1
15 1 15 65 59 14
16 1 15 153 329 174
17 1 21 295 1225 1234
18 1 21 507 3465 6124
19 1 28 810 8358 23259
20 1 28 1214 17710 73204

Examples

			T(14,3) = 4 because the number of equivalent classes of ways of placing 3 7 X 7 square tiles in an 14 X 14 square under all symmetry operations of the square is 4. The portrayal of an example from each equivalence class is:
.___________________          ___________________
|         |         |        |         |_________|
|         |         |        |         |         |
|         |         |        |         |         |
|    .    |    .    |        |    .    |         |
|         |         |        |         |    .    |
|         |         |        |         |         |
|_________|_________|        |_________|         |
|         |         |        |         |_________|
|         |         |        |         |         |
|         |         |        |         |         |
|    .    |         |        |    .    |         |
|         |         |        |         |         |
|         |         |        |         |         |
|_________|_________|        |_________|_________|
.
.___________________          ___________________
|         |         |        |         |         |
|         |_________|        |         |         |
|         |         |        |         |_________|
|    .    |         |        |    .    |         |
|         |         |        |         |         |
|         |    .    |        |         |         |
|_________|         |        |_________|    .    |
|         |         |        |         |         |
|         |_________|        |         |         |
|         |         |        |         |_________|
|    .    |         |        |    .    |         |
|         |         |        |         |         |
|         |         |        |         |         |
|_________|_________|        |_________|_________|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 7
T(n,1) = (floor((n-7)/2)+1)*(floor((n-7)/2+2))/2, n >= 7
T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor(7^2/4) + A014409(c+2), 0 <= c < 7, c even
T(c+2*7,2) = A131474(c+1)*(7-1) + A000217(c+1)*floor((7-1)(7-3)/4) + A014409(c+2), 0 <= c < 7, c odd
T(c+2*7,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((7-c-1)/2) + A131941(c+1)*floor((7-c)/2)) + S(c+1,3c+2,3), 0 <= c < 7 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
Showing 1-10 of 24 results. Next