cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ayoub Saber Rguez

Ayoub Saber Rguez's wiki page.

Ayoub Saber Rguez has authored 1 sequences.

A347419 Number of partitions of n into two or more distinct primes.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 2, 1, 2, 2, 3, 1, 4, 2, 4, 4, 4, 4, 5, 5, 6, 5, 6, 6, 6, 8, 7, 9, 9, 9, 11, 10, 11, 13, 12, 13, 15, 14, 17, 16, 18, 18, 20, 21, 23, 22, 25, 25, 27, 30, 29, 32, 32, 34, 37, 38, 40, 42, 44, 45, 50, 49, 53, 55, 57, 60, 64, 66, 70, 71, 76, 78, 83, 86, 89, 93, 96
Offset: 1

Author

Ayoub Saber Rguez, Aug 31 2021

Keywords

Comments

Every positive integer can be written as a sum of two or more distinct primes except 1,2,3,4,6 and 11.

Examples

			a(5) = 1: 2+3.
a(18) = 4: 11+7, 11+5+2, 13+5, 13+3+2.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) h(n):=`if`(n<2, 0, `if`(isprime(n), n, h(n-1))) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
          b(n, h(i-1))+b(n-i, h(min(n-i, i-1)))))
        end:
    a:= n-> b(n, h(n-1)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 03 2021
  • Mathematica
    m = 24; Rest @ CoefficientList[Series[Product[(1 + x^Prime[k]), {k, 1, m}], {x, 0, Prime[m]}], x] - Table[Boole @ PrimeQ[n], {n, 1, Prime[m]}] (* Amiram Eldar, Sep 03 2021 *)
  • Python
    from sympy import isprime, primerange
    from functools import cache
    @cache
    def A000586(n, k=None): # after Charles R Greathouse IV
        if k == None: k = n
        if n < 1: return int(n == 0)
        return sum(A000586(n-p, p-1) for p in primerange(1, k+1))
    def a(n): return A000586(n) - isprime(n)
    print([a(n) for n in range(1, 83)]) # Michael S. Branicky, Sep 03 2021

Formula

a(n) = A000586(n) - A010051(n).