A007590
a(n) = floor(n^2/2).
Original entry on oeis.org
0, 0, 2, 4, 8, 12, 18, 24, 32, 40, 50, 60, 72, 84, 98, 112, 128, 144, 162, 180, 200, 220, 242, 264, 288, 312, 338, 364, 392, 420, 450, 480, 512, 544, 578, 612, 648, 684, 722, 760, 800, 840, 882, 924, 968, 1012, 1058, 1104, 1152, 1200, 1250, 1300, 1352, 1404
Offset: 0
a(3) = 4 because 3^2/2 = 9/2 = 4.5 and floor(4.5) = 4.
a(4) = 8 because 4^2/2 = 16/2 = 8.
a(5) = 12 because 5^2/2 = 25/2 = 12.5 and floor(12.5) = 12.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Laurent Bulteau, Samuele Giraudo and Stéphane Vialette, Disorders and permutations , 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Article No. 18; pp. 18:1-18:14.
- Bakir Farhi, On the Representation of the Natural Numbers as the Sum of Three Terms of the Sequence floor(n^2/a), Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.4.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968.
- R. D. Lobato, Recursive partitioning approach for the Manufacturer's Pallet Loading Problem.
- Emily O'Sullivan, Understanding the face structure of the Kunz cone, Master's thesis, San Diego State Univ., 2023.
- K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials arXiv:1108.3051 [math.NT], 2011-2014.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Eric Weisstein's World of Mathematics, Matching Number.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Eric Weisstein's World of Mathematics, Vertex Count.
- Eric Weisstein's World of Mathematics, White Bishop Graph.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
For n > 2: a(n) = sum of (n-1)-th row in triangle
A101037.
A080476 is essentially the same sequence.
Elliptic troublemaker sequences:
A000212 (= R_n(1,3) = R_n(2,3)),
A002620 (= R_n(1,2)),
A030511 (= R_n(2,6) = R_n(4,6)),
A033436 (= R_n(1,4) = R_n(3,4)),
A033437 (= R_n(1,5) = R_n(4,5)),
A033438 (= R_n(1,6) = R_n(5,6)),
A033439 (= R_n(1,7) = R_n(6,7)),
A184535 (= R_n(2,5) = R_n(3,5)).
-
a007550 = flip div 2 . (^ 2) -- Reinhard Zumkeller, Aug 05 2014
-
a007590 = 0 : 0 : 0 : [ a1 + a2 - a3 + 2 | (a1, a2, a3) <- zip3 (tail (tail a007590)) (tail a007590) a007590 ] -- Luc Duponcheel, Sep 30 2020
-
[Floor(n^2/2): n in [0..53]]; // Bruno Berselli, Mar 28 2011
-
[Binomial(n,2)+Floor(n/2): n in [0..60]]; // Bruno Berselli, Jun 08 2017
-
A007590:=n->floor(n^2/2); seq(A007590(k), k=0..100); # Wesley Ivan Hurt, Oct 29 2013
-
Floor[Range[0, 53]^2/2] (* Alonso del Arte, Aug 07 2013 *)
Table[Binomial[n, 2] + Floor[n/2], {n, 0, 60}] (* Bruno Berselli, Jun 08 2017 *)
LinearRecurrence[{2, 0, -2, 1}, {0, 2, 4, 8}, 20] (* Eric W. Weisstein, Sep 14 2017 *)
CoefficientList[Series[-2 x/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 14 2017 *)
Table[Floor[n^2/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 11 2018 *)
-
{a(n) = n^2 \ 2}
-
{a(n) = local(v, c, m); m = n+1; forvec( v = vector( 3, i, [-m, m]), if( 0==prod( k=1, 3, v[k]), next); if( 0==sum( k=1, 3, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
-
first(n) = Vec(2*x^2/((1+x)*(1-x)^3) + O(x^n), -n); \\ Iain Fox, Dec 11 2017
-
def A007590(n): return n**2//2 # Chai Wah Wu, Jun 07 2022
A212959
Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
Original entry on oeis.org
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
A052928
The even numbers repeated.
Original entry on oeis.org
0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001, page 181. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 07 2009
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Beierle, A. Biryukov and A. Udovenko, On degree-d zero-sum sets of full rank, Cryptography and Communications, November 2019.
- W. Eisfeld and A. Viel, Higher order (A+E)xe pseudo-Jahn-Teller coupling, J. Chem. Phys., 122, 204317 (2005).
- Nathan Fox, Finding Linear-Recurrent Solutions to Hofstadter-Like Recurrences Using Symbolic Computation, arXiv:1609.06342 [math.NT], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 914
- J. Sondow and E. W. Weisstein, MathWorld: Wallis Formula
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, Legendre-Gauss Quadrature
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree
- Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
- Eric Weisstein's World of Mathematics, Random Matrix
- Eric Weisstein's World of Mathematics, White Bishop Graph
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1)
- Index entries for Molien series
Cf.
A000034,
A000124,
A004001,
A004526,
A005843,
A007590,
A008619,
A008794,
A032766,
A064455,
A099392,
A109613,
A118266,
A123684,
A124356,
A192442,
A289187,
A342819.
For n >= 3,
A329822(n) gives the minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements. -
Christof Beierle, Nov 25 2019
-
a052928 = (* 2) . flip div 2
a052928_list = 0 : 0 : map (+ 2) a052928_list
-- Reinhard Zumkeller, Jun 20 2015
-
[2*Floor(n/2) : n in [0..50]]; // Wesley Ivan Hurt, Sep 13 2014
-
spec := [S,{S=Union(Sequence(Prod(Z,Z)),Prod(Sequence(Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Flatten[Table[{2n, 2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
With[{ev=2Range[0,40]},Riffle[ev,ev]] (* Harvey P. Dale, May 08 2021 *)
Table[Round[n + 1/2], {n, -1, 72}] (* Ed Pegg Jr, Jul 28 2025 *)
-
a(n)=n\2*2 \\ Charles R Greathouse IV, Nov 20 2011
Removed duplicate of recurrence; corrected original recurrence and g.f. against offset -
R. J. Mathar, Feb 19 2010
A099392
a(n) = floor((n^2 - 2*n + 3)/2).
Original entry on oeis.org
1, 1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405
Offset: 1
Ralf Stephan following a suggestion from Luke Pebody, Oct 20 2004
Differs from
A085913 at n = 61. Apart from leading term, identical to
A080827.
Partial sums:
A212964(n) + n for n > 0.
-
Array[Floor[(#^2 - 2 # + 3)/2] &, 54] (* or *)
Rest@ CoefficientList[Series[x (-1 + x - x^2 - x^3)/((1 + x) (x - 1)^3), {x, 0, 54}], x] (* Michael De Vlieger, Apr 21 2018 *)
-
a(n)=(n^2+3)\2-n \\ Charles R Greathouse IV, Aug 01 2013
A334187
Number T(n,k) of k-element subsets of [n] avoiding 3-term arithmetic progressions; triangle T(n,k), n>=0, 0<=k<=A003002(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 6, 1, 1, 6, 15, 14, 4, 1, 7, 21, 26, 10, 1, 8, 28, 44, 25, 1, 9, 36, 68, 51, 4, 1, 10, 45, 100, 98, 24, 1, 11, 55, 140, 165, 64, 7, 1, 12, 66, 190, 267, 144, 25, 1, 13, 78, 250, 407, 284, 78, 6, 1, 14, 91, 322, 601, 520, 188, 22, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 1;
1, 3, 3;
1, 4, 6, 2;
1, 5, 10, 6, 1;
1, 6, 15, 14, 4;
1, 7, 21, 26, 10;
1, 8, 28, 44, 25;
1, 9, 36, 68, 51, 4;
1, 10, 45, 100, 98, 24;
1, 11, 55, 140, 165, 64, 7;
1, 12, 66, 190, 267, 144, 25;
1, 13, 78, 250, 407, 284, 78, 6;
1, 14, 91, 322, 601, 520, 188, 22, 1;
1, 15, 105, 406, 849, 862, 386, 64, 4;
1, 16, 120, 504, 1175, 1394, 763, 164, 14;
...
Last elements of rows give
A262347.
-
b:= proc(n, s) option remember; `if`(n=0, 1, b(n-1, s)+ `if`(
ormap(j-> 2*j-n in s, s), 0, expand(x*b(n-1, s union {n}))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, {})):
seq(T(n), n=0..16);
-
b[n_, s_] := b[n, s] = If[n == 0, 1, b[n-1, s] + If[AnyTrue[s, MemberQ[s, 2 # - n]&], 0, Expand[x b[n-1, s ~Union~ {n}]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, {}]];
T /@ Range[0, 16] // Flatten (* Jean-François Alcover, May 30 2020, after Maple *)
A381476
Triangle read by rows: T(n,k) is the number of subsets of {1..n} with k elements such that every pair of distinct elements has a different difference, 0 <= k <= A143824(n).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 6, 1, 6, 15, 14, 1, 7, 21, 26, 2, 1, 8, 28, 44, 10, 1, 9, 36, 68, 26, 1, 10, 45, 100, 60, 1, 11, 55, 140, 110, 1, 12, 66, 190, 190, 4, 1, 13, 78, 250, 304, 22, 1, 14, 91, 322, 466, 68, 1, 15, 105, 406, 676, 156
Offset: 0
Triangle begins:
0 | 1;
1 | 1, 1;
2 | 1, 2, 1;
3 | 1, 3, 3;
4 | 1, 4, 6, 2;
5 | 1, 5, 10, 6;
6 | 1, 6, 15, 14;
7 | 1, 7, 21, 26, 2;
8 | 1, 8, 28, 44, 10;
9 | 1, 9, 36, 68, 26;
10 | 1, 10, 45, 100, 60;
11 | 1, 11, 55, 140, 110;
12 | 1, 12, 66, 190, 190, 4;
...
-
row(n)={
local(L=List());
my(recurse(k,r,b,w)=
if(k > n, if(r>=#L,listput(L,0)); L[1+r]++,
self()(k+1, r, b, w);
b+=1<
A213759
Principal diagonal of the convolution array A213783.
Original entry on oeis.org
1, 4, 11, 22, 39, 62, 93, 132, 181, 240, 311, 394, 491, 602, 729, 872, 1033, 1212, 1411, 1630, 1871, 2134, 2421, 2732, 3069, 3432, 3823, 4242, 4691, 5170, 5681, 6224, 6801, 7412, 8059, 8742, 9463, 10222, 11021, 11860, 12741, 13664, 14631
Offset: 1
-
b[n_] := Floor[(n + 2)/2]; c[n_] := Floor[(n + 1)/2];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213783 *)
Table[t[n, n], {n, 1, 40}] (* A213759 *)
LinearRecurrence[{3,-2,-2,3,-1},{1,4,11,22,39},50] (* Harvey P. Dale, Jul 22 2014 *)
A300760
Number of ways to select 4 numbers from the set of the first n natural numbers avoiding 3-term arithmetic progressions.
Original entry on oeis.org
0, 1, 4, 10, 25, 51, 98, 165, 267, 407, 601, 849, 1175, 1580, 2089, 2703, 3452, 4338, 5395, 6622, 8058, 9706, 11606, 13758, 16210, 18963, 22066, 25520, 29379, 33645, 38376, 43571, 49293, 55545, 62391, 69831, 77937, 86710, 96223, 106477, 117550, 129444, 142241
Offset: 4
There are 4 selections of 4 natural numbers from the set {1,2,3,4,5,6} free of 3-term arithmetic progressions: {1,2,4,5}, {1,2,5,6}, {1,3,4,6}, {2,3,5,6}.
- Heinrich Ludwig, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,-2,2,0,1,0,-2,1).
-
Array[(#^4 - 12 #^3 + 51 #^2 - 78 # + 32)/24 + Boole[OddQ@ #] (-# + 2)/4 - Boole[Mod[#, 3] == 0]/3 - Boole[Mod[#, 4] == 0] &, 43, 4] (* Michael De Vlieger, Mar 14 2018 *)
LinearRecurrence[{2,0,-1,0,-2,2,0,1,0,-2,1},{0,1,4,10,25,51,98,165,267,407,601},50] (* Harvey P. Dale, Feb 18 2024 *)
-
concat(0, Vec(x^5*(1 + 2*x + 2*x^2 + 6*x^3 + 5*x^4 + 8*x^5) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Aug 06 2018
A300254
a(n) = 25*(n + 1)*(4*n + 3)*(5*n + 4)/3.
Original entry on oeis.org
100, 1050, 3850, 9500, 19000, 33350, 53550, 80600, 115500, 159250, 212850, 277300, 353600, 442750, 545750, 663600, 797300, 947850, 1116250, 1303500, 1510600, 1738550, 1988350, 2261000, 2557500, 2878850, 3226050, 3600100, 4002000, 4432750, 4893350, 5384800, 5908100, 6464250
Offset: 0
- Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 32-37 [the equation 1.7 contains a typo].
-
List([0..40], n -> 25*(n+1)*(4*n+3)*(5*n+4)/3);
-
[div(25*(n+1)*(4*n+3)*(5*n+4), 3) for n in 0:40] |> println
-
[25*(n+1)*(4*n+3)*(5*n+4)/3: n in [0..40]];
-
Table[25 (n + 1) (4 n + 3) (5 n + 4)/3, {n, 0, 40}]
-
makelist(25*(n+1)*(4*n+3)*(5*n+4)/3, n, 0, 40);
-
vector(40, n, n--; 25*(n+1)*(4*n+3)*(5*n+4)/3)
-
Vec(50*(2 + 13*x + 5*x^2) / (1 - x)^4 + O(x^60)) \\ Colin Barker, Mar 13 2018
-
[25*(n+1)*(4*n+3)*(5*n+4)/3 for n in range(40)]
-
[25*(n+1)*(4*n+3)*(5*n+4)/3 for n in (0..40)]
A338796
Triangle T read by rows: T(n, k) is the k-th row sum of the symmetric Toeplitz matrix M(n) whose first row consists of a single zero followed by successive positive integers repeated (A004526).
Original entry on oeis.org
0, 1, 1, 2, 2, 2, 4, 3, 3, 4, 6, 5, 4, 5, 6, 9, 7, 6, 6, 7, 9, 12, 10, 8, 8, 8, 10, 12, 16, 13, 11, 10, 10, 11, 13, 16, 20, 17, 14, 13, 12, 13, 14, 17, 20, 25, 21, 18, 16, 15, 15, 16, 18, 21, 25, 30, 26, 22, 20, 18, 18, 18, 20, 22, 26, 30, 36, 31, 27, 24, 22, 21, 21, 22, 24, 27, 31, 36
Offset: 1
n\k| 1 2 3 4 5 6
---+------------
1 | 0
2 | 1 1
3 | 2 2 2
4 | 4 3 3 4
5 | 6 5 4 5 6
6 | 9 7 6 6 7 9
...
For n = 4 the matrix M(4) is
0 1 1 2
1 0 1 1
1 1 0 1
2 1 1 0
and therefore T(4, 1) = 4, T(4, 2) = 3, T(4, 3) = 3 and T(4, 4) = 4.
Cf.
A002378 (conjectured determinant of M(2n+1)),
A083392 (conjectured determinant of M(n+1)),
A332566 (permanent of M(n)),
A333119 (k-th super- and subdiagonal sums of the matrix M(n)),
A338456 (hafnian of M(n)).
-
T[n_,k_]:=((-1)^k+(-1)^(n-k+1)+4k^2+4n+2n^2-4k(n+1))/8; Flatten[Table[T[n,k],{n,12},{k,n}]] (* or *)
r[n_]:=Table[SeriesCoefficient[(2x^3y^2+y^2(1+y)+x^2(y-3y^2)-x(-1+2y+y^2))/((1-x)^3(1+x)(1-y)^3(1+y)),{x,0,i},{y,0,j}],{i,n,n},{j, n}]; Flatten[Array[r,12]] (* or *)
r[n_]:=Table[SeriesCoefficient[1/8 E^(-x-y)(-1+E^(2 x)+2 E^(2 (x+y))(x (3+x)-2 x y+2 y^2)),{x, 0, i},{y, 0, j}]i!j!,{i, n, n},{j, n}]; Flatten[Array[r, 12]]
-
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, j\2, if (j==1, i\2)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; }
T(n, k) = my(m = tm(n)); sum(i=1, n, m[i, k]);
matrix(10, 10, n, k, if (n>=k, T(n,k), 0)) \\ Michel Marcus, Nov 12 2020
Showing 1-10 of 11 results.
Comments