A350271 The covering radius of the first order Reed-Muller code RM(1,n).
0, 1, 2, 6, 12, 28, 56, 120
Offset: 1
Links
- C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge University Press (2021), Section 4.1.6.
- T. Helleseth, T. Klove and J. Mykkeltveit, On the covering radius of binary codes (Corresp.), IEEE Transactions on Information Theory, Vol. 24 (1978).
- X. Hou, On the norm and covering radius of the first-order Reed-Muller codes, IEEE Transactions on Information Theory, Vol. 43 (1997).
- S. Kavut and M. D. Yücel, 9-variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class, Information and Computation, Vol. 208 (2010).
- O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, Vol. 20 (1976).
Crossrefs
Cf. A006516.
Formula
a(2n) = A006516(n).
Comments