A046165 Number of minimal covers of n objects.
1, 1, 2, 8, 49, 462, 6424, 129425, 3731508, 152424420, 8780782707, 710389021036, 80610570275140, 12815915627480695, 2855758994821922882, 892194474524889501292, 391202163933291014701953, 240943718535427829240708786, 208683398342300491409959279244
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 02 2019: (Start) The a(1) = 1 through a(3) = 8 minimal covers: {{1}} {{1,2}} {{1,2,3}} {{1},{2}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1,2},{1,3}} {{1,2},{2,3}} {{1},{2},{3}} {{1,3},{2,3}} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..113
- Damian Bursztyn, François Goasdoué, and Ioana Manolescu, Optimizing Reformulation-based Query Answering in RDF, [Research Report] RR-8646, INRIA Saclay. 2014.
- D. Deligeorgaki, A. Markham, P. Misra, and L. Solus, Combinatorial and algebraic perspectives on the marginal independence structure of Bayesian networks, arXiv:2210.00822 [stat.ME], 2022.
- Giovanni Resta, Illustration of a(4)=49.
- Eric Weisstein's World of Mathematics, Minimal Cover
Crossrefs
Programs
-
Maple
a:= n-> add(add((-1)^i* binomial(k,i) *(2^k-1-i)^n, i=0..k)/k!, k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2008
-
Mathematica
Table[Sum[Sum[Binomial[n,i]StirlingS2[i,k](2^k-k-1)^(n-i),{i,k,n}],{k,2,n}]+1,{n,1,20}] (* Geoffrey Critzer, Jun 27 2013 *)
Formula
E.g.f.: Sum_{n>=0} (exp(x)-1)^n*exp(x*(2^n-n-1))/n!. - Vladeta Jovovic, May 08 2004
a(n) = Sum_{k=1..n} Sum_{i=k..n} C(n,i)*Stirling2(i,k)*(2^k - k - 1)^(n - i). - Geoffrey Critzer, Jun 27 2013
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 18 2017
Comments