cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A046165 Number of minimal covers of n objects.

Original entry on oeis.org

1, 1, 2, 8, 49, 462, 6424, 129425, 3731508, 152424420, 8780782707, 710389021036, 80610570275140, 12815915627480695, 2855758994821922882, 892194474524889501292, 391202163933291014701953, 240943718535427829240708786, 208683398342300491409959279244
Offset: 0

Views

Author

Keywords

Comments

No edge of a minimal cover can be a subset of any other, so minimal covers are antichains, but the converse is not true. - Gus Wiseman, Jul 03 2019
a(n) is the number of undirected graphs on n nodes for which the intersection number and independence number are equal. See Proposition 2.3.7 and Theorem 2.3.3 of the Deligeorgaki et al. paper below. - Alex Markham, Oct 13 2022

Examples

			From _Gus Wiseman_, Jul 02 2019: (Start)
The a(1) = 1 through a(3) = 8 minimal covers:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1,2},{1,3}}
                    {{1,2},{2,3}}
                    {{1},{2},{3}}
                    {{1,3},{2,3}}
(End)
		

Crossrefs

Antichain covers are A006126.
Minimal covering simple graphs are A053530.
Maximal antichains are A326358.
Row sums of A035347 or of A282575.

Programs

  • Maple
    a:= n-> add(add((-1)^i* binomial(k,i) *(2^k-1-i)^n, i=0..k)/k!, k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2008
  • Mathematica
    Table[Sum[Sum[Binomial[n,i]StirlingS2[i,k](2^k-k-1)^(n-i),{i,k,n}],{k,2,n}]+1,{n,1,20}] (* Geoffrey Critzer, Jun 27 2013 *)

Formula

E.g.f.: Sum_{n>=0} (exp(x)-1)^n*exp(x*(2^n-n-1))/n!. - Vladeta Jovovic, May 08 2004
a(n) = Sum_{k=1..n} Sum_{i=k..n} C(n,i)*Stirling2(i,k)*(2^k - k - 1)^(n - i). - Geoffrey Critzer, Jun 27 2013
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 18 2017

A056885 Triangle T(n,k) = number of minimal covers of an unlabeled n-set that cover k points of that set uniquely, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 1, 3, 5, 0, 0, 1, 5, 8, 7, 0, 0, 1, 8, 19, 17, 11, 0, 0, 1, 12, 45, 56, 35, 15, 0, 0, 1, 17, 107, 194, 151, 65, 22, 0, 0, 1, 24, 244, 713, 728, 365, 118, 30, 0, 0, 1, 32, 547, 2697, 3996, 2413, 835, 203, 42, 0, 0, 1, 42, 1173, 10356, 24446
Offset: 0

Views

Author

Vladeta Jovovic, Sep 04 2000

Keywords

Comments

Row sums give A048194.

Examples

			[1], [0,1], [0,0,2], [0,0,1,3], [0,0,1,3,5], [0,0,1,5,8,7], ...; There are 21=1+5+8+7 minimal covers of an unlabeled 5-set.
		

Crossrefs

Cf. A035347 for labeled case.

A057963 Triangle T(n,k) of number of minimal 2-covers of a labeled n-set that cover k points of that set uniquely (k=2,..,n).

Original entry on oeis.org

1, 3, 3, 6, 12, 7, 10, 30, 35, 15, 15, 60, 105, 90, 31, 21, 105, 245, 315, 217, 63, 28, 168, 490, 840, 868, 504, 127, 36, 252, 882, 1890, 2604, 2268, 1143, 255, 45, 360, 1470, 3780, 6510, 7560, 5715, 2550, 511, 55, 495, 2310, 6930, 14322, 20790, 20955, 14025
Offset: 2

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A000392.

Examples

			There are 90=10+30+35+15 minimal 2-covers of a labeled 5-set.
Triangle starts:
1;
3, 3;
6, 12, 7;
10, 30, 35, 15;
15, 60, 105, 90, 31;
...
		

Crossrefs

Programs

  • Magma
    /* As triangle: */ [[Binomial(n, k)*(2^(k-1)-1): k in [2..n]]: n in [1.. 15]]; // Vincenzo Librandi, Feb 19 2016
  • Maple
    seq(seq(binomial(n,k)*(2^(k-1)-1),k=2..n), n=2..13); # Robert Israel, Feb 18 2016
  • Mathematica
    Table[ Binomial[n, k] (2^(k-1)-1), {n, 2, 13}, {k, 2, n}] // Flatten (* Jean-François Alcover, Sep 18 2018, from Maple *)
  • PARI
    T(n,k) = m=2; binomial(n, k)*stirling(k, m, 2)*(2^m-m-1)^(n-k); \\ Michel Marcus, Feb 18 2016
    

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind. Here m=2.
From Robert Israel, Feb 18 2016: (Start)
T(n,k) = C(n,k) * (2^(k-1)-1).
G.f. of triangle: x^2*y^2/((1-x)*(1-x-x*y)*(1-x-2*x*y)). (End)

A057965 Triangle T(n,k) of number of minimal 4-covers of a labeled n-set that cover k points of that set uniquely (k=4,..,n).

Original entry on oeis.org

1, 55, 10, 1815, 660, 65, 46585, 25410, 5005, 350, 1024870, 745360, 220220, 30800, 1701, 20292426, 18447660, 7267260, 1524600, 168399, 7770, 372027810, 405848520, 199849650, 55902000, 9261945, 854700, 34105, 6430766430
Offset: 4

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A016111.

Examples

			[1], [55, 10], [1815, 660, 65], [46585, 25410, 5005, 350], ...; there are 1815 minimal 4-covers of a labeled 6-set that cover 4 points of that set uniquely.
		

Crossrefs

Cf. A035347, A057669, A057963, A057964, A057966, A057967(unlabeled case), A057968.

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.

A057964 Triangle T(n,k) of number of minimal 3-covers of a labeled n-set that cover k points of that set uniquely (k=3,..,n).

Original entry on oeis.org

1, 16, 6, 160, 120, 25, 1280, 1440, 600, 90, 8960, 13440, 8400, 2520, 301, 57344, 107520, 89600, 40320, 9632, 966, 344064, 774144, 806400, 483840, 173376, 34776, 3025, 1966080, 5160960, 6451200, 4838400, 2311680, 695520, 121000, 9330
Offset: 3

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A003468.

Examples

			[1], [16, 6], [160, 120, 25], [1280, 1440, 600, 90], ...; There are 305=160+120+25 minimal 3-covers of a labeled 5-set.
		

Crossrefs

Cf. A035347, A057669 (unlabeled case), A057963, A057965-A057968.

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.

A057966 Triangle T(n,k) of number of minimal 5-covers of a labeled n-set that cover k points of that set uniquely (k=5,..,n).

Original entry on oeis.org

1, 156, 15, 14196, 2730, 140, 984256, 283920, 29120, 1050, 57578976, 22145760, 3407040, 245700, 6951, 2994106752, 1439474400, 295276800, 31941000, 1807260, 42525, 142719088512, 82337935680, 21112291200, 3045042000, 258438180
Offset: 5

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A046166.

Examples

			[1], [156, 15], [14196, 2730, 140], [984256, 283920, 29120, 1050], ...; there are 15 minimal 5-covers of a labeled 6-set that cover 6 points of that set uniquely.
		

Crossrefs

Cf. A035347, A057669, A057963-A057965, A057967, A057968(unlabeled case).

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.

A282575 Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).

Original entry on oeis.org

1, 1, 2, 5, 3, 15, 28, 6, 52, 210, 190, 10, 203, 1506, 3360, 1340, 15, 877, 10871, 48321, 60270, 9065, 21, 4140, 80592, 636300, 1820056, 1132880, 57512, 28, 21147, 618939, 8081928, 45455676, 76834926, 21067452, 344316, 36, 115975, 4942070, 101684115, 1027544400, 3860929170, 3406410252, 377190240, 1966440, 45
Offset: 0

Views

Author

Geoffrey Critzer, Feb 18 2017

Keywords

Examples

			Triangle T(n,k) begins:
:    1;
:    1;
:    2;
:    5,     3;
:   15,    28,      6;
:   52,   210,    190,      10;
:  203,  1506,   3360,    1340,      15;
:  877, 10871,  48321,   60270,    9065,    21;
: 4140, 80592, 636300, 1820056, 1132880, 57512, 28;
		

Crossrefs

Cf. A035348. Row sums A046165. Column k=0 A000110. Column k=1 A003466.
Mirrored triangle gives A035347.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k):
    seq(seq(T(n,k), k=0..max(0,n-2)), n=0..12);  # Alois P. Heinz, Feb 18 2017
  • Mathematica
    nn = 8; Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0,nn}], {x, 0, nn}], {x, y}]], 1] // Grid

Formula

E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).

A003467 Number of minimal covers of an n-set that cover exactly 3 points uniquely.

Original entry on oeis.org

5, 28, 190, 1340, 9065, 57512, 344316, 1966440, 10813935, 57672340, 299893594, 1526727748, 7633634645, 37580965520, 182536112120, 876173330832, 4161823312731, 19585050873180, 91396904062870, 423311976698380, 1947235092796609, 8901646138480568
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A035347.

Programs

  • Magma
    [5] cat [n*(n-1)*(n-2)*(4^n+192)/384: n in [4..30]]; // Vincenzo Librandi, May 03 2013
  • Mathematica
    Table[SeriesCoefficient[x^3*(1+(1-4*x)^(-4)+3*(1-x)^(-4)),{x,0,n}],{n,3,25}] (* Vaclav Kotesovec, Oct 04 2012 *)

Formula

G.f.: x^3*(1 + (1-4*x)^(-4) + 3*(1-x)^(-4)). - corrected by Vaclav Kotesovec, Oct 04 2012
Recurrence (for n>3): 4*(n-1)*n*a(n-2)-5*(n-4)*n*a(n-1)+(n-4)*(n-3)*a(n)=0. - Vaclav Kotesovec, Oct 04 2012
For n>3, a(n) = n*(n-1)*(n-2)*(4^n+192)/384. - Vaclav Kotesovec, Oct 26 2012

Extensions

Name clarified by Geoffrey Critzer, Apr 23 2017
Showing 1-8 of 8 results.