cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A057963 Triangle T(n,k) of number of minimal 2-covers of a labeled n-set that cover k points of that set uniquely (k=2,..,n).

Original entry on oeis.org

1, 3, 3, 6, 12, 7, 10, 30, 35, 15, 15, 60, 105, 90, 31, 21, 105, 245, 315, 217, 63, 28, 168, 490, 840, 868, 504, 127, 36, 252, 882, 1890, 2604, 2268, 1143, 255, 45, 360, 1470, 3780, 6510, 7560, 5715, 2550, 511, 55, 495, 2310, 6930, 14322, 20790, 20955, 14025
Offset: 2

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A000392.

Examples

			There are 90=10+30+35+15 minimal 2-covers of a labeled 5-set.
Triangle starts:
1;
3, 3;
6, 12, 7;
10, 30, 35, 15;
15, 60, 105, 90, 31;
...
		

Crossrefs

Programs

  • Magma
    /* As triangle: */ [[Binomial(n, k)*(2^(k-1)-1): k in [2..n]]: n in [1.. 15]]; // Vincenzo Librandi, Feb 19 2016
  • Maple
    seq(seq(binomial(n,k)*(2^(k-1)-1),k=2..n), n=2..13); # Robert Israel, Feb 18 2016
  • Mathematica
    Table[ Binomial[n, k] (2^(k-1)-1), {n, 2, 13}, {k, 2, n}] // Flatten (* Jean-François Alcover, Sep 18 2018, from Maple *)
  • PARI
    T(n,k) = m=2; binomial(n, k)*stirling(k, m, 2)*(2^m-m-1)^(n-k); \\ Michel Marcus, Feb 18 2016
    

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind. Here m=2.
From Robert Israel, Feb 18 2016: (Start)
T(n,k) = C(n,k) * (2^(k-1)-1).
G.f. of triangle: x^2*y^2/((1-x)*(1-x-x*y)*(1-x-2*x*y)). (End)

A057968 Triangle T(n,k) of numbers of minimal 5-covers of an unlabeled n+5-set that cover k points of that set uniquely (k=5,..,n+5).

Original entry on oeis.org

1, 4, 1, 19, 7, 2, 91, 46, 16, 3, 436, 279, 115, 28, 5, 1991, 1563, 740, 221, 49, 7, 8651, 7978, 4309, 1524, 405, 75, 10, 35354, 37290, 22604, 9272, 2875, 659, 115, 13, 135617, 159948, 107584, 50058, 17840, 4866, 1042, 163, 18, 488312, 633211
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A005785.

Examples

			[1], [4, 1], [19, 7, 2], [91, 46, 16, 3], [436, 279, 115, 28, 5], ...; there are 46 minimal 5-covers of an unlabeled 8-set that cover 6 points of that set uniquely.
		

Crossrefs

Formula

T(n, k)=b(n, k)-b(n-1, k); b(n, k)=coefficient of x^k in (x^5/5!)*(Z(S_n; 27+5*x, 27+5*x^2, ...)+10*Z(S_n; 13+3*x, 27+5*x^2, 13+3*x^3, 27+5*x^4, ...)+15*Z(S_n; 7+x, 27+5*x^2, 7+x^3, 27+5*x^4, ...)+20*Z(S_n; 6+2*x, 6+2*x^2, 27+5*x^3, 6+2*x^4, 6+2*x^5, 27+5*x^6, ...)+20*Z(S_n; 4, 6+2*x^2, 13+3*x^3, 6+2*x^4, 4, 27+5*x^6, 4, 6+2*x^8, 13+3*x^9, 6+2*x^10, 4, 27+5*x^12, ...)+30*Z(S_n; 3+x, 7+x^2, 3+x^3, 27+5*x^4, 3+x^5, 7+x^6, 3+x^7, 27+5*x^8, ...)+24*Z(S_n; 2, 2, 2, 2, 27+5*x^5, 2, 2, 2, 2, 27+5*x^10, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A057964 Triangle T(n,k) of number of minimal 3-covers of a labeled n-set that cover k points of that set uniquely (k=3,..,n).

Original entry on oeis.org

1, 16, 6, 160, 120, 25, 1280, 1440, 600, 90, 8960, 13440, 8400, 2520, 301, 57344, 107520, 89600, 40320, 9632, 966, 344064, 774144, 806400, 483840, 173376, 34776, 3025, 1966080, 5160960, 6451200, 4838400, 2311680, 695520, 121000, 9330
Offset: 3

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A003468.

Examples

			[1], [16, 6], [160, 120, 25], [1280, 1440, 600, 90], ...; There are 305=160+120+25 minimal 3-covers of a labeled 5-set.
		

Crossrefs

Cf. A035347, A057669 (unlabeled case), A057963, A057965-A057968.

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.

A057966 Triangle T(n,k) of number of minimal 5-covers of a labeled n-set that cover k points of that set uniquely (k=5,..,n).

Original entry on oeis.org

1, 156, 15, 14196, 2730, 140, 984256, 283920, 29120, 1050, 57578976, 22145760, 3407040, 245700, 6951, 2994106752, 1439474400, 295276800, 31941000, 1807260, 42525, 142719088512, 82337935680, 21112291200, 3045042000, 258438180
Offset: 5

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A046166.

Examples

			[1], [156, 15], [14196, 2730, 140], [984256, 283920, 29120, 1050], ...; there are 15 minimal 5-covers of a labeled 6-set that cover 6 points of that set uniquely.
		

Crossrefs

Cf. A035347, A057669, A057963-A057965, A057967, A057968(unlabeled case).

Formula

Number of minimal m-covers of a labeled n-set that cover k points of that set uniquely is C(n, k)*S(k, m)*(2^m-m-1)^(n-k), where S(k, m) are Stirling numbers of the second kind.

A057967 Triangle T(n,k) of numbers of minimal 4-covers of an unlabeled n+4-set that cover k points of that set uniquely (k=4,..,n+4).

Original entry on oeis.org

1, 3, 1, 10, 5, 2, 30, 21, 11, 3, 83, 75, 49, 18, 5, 208, 231, 177, 84, 30, 6, 495, 636, 554, 318, 143, 42, 9, 1101, 1603, 1540, 1023, 543, 210, 62, 11, 2327, 3737, 3907, 2904, 1759, 822, 311, 82, 15, 4685, 8163, 9153, 7470, 5012, 2706, 1219, 423, 111, 18, 9041
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A005784.

Examples

			[1], [3, 1], [10, 5, 2], [30, 21, 11, 3], [83, 75, 49, 18], ...; there are 5 minimal 4-covers of an unlabeled 6-set that cover 5 points of that set uniquely.
		

Crossrefs

Formula

T(n, k) = b(n, k)-b(n-1, k); b(n, k) = coefficient of x^k in x^4/24*(Z(S_n; 12 + 4*x, 12 + 4*x^2, ...) + 8*Z(S_n; 3 + x, 3 + x^2, 12 + 4*x^3, 3 + x^4, 3 + x^5, 12 + 4*x^6, ...) + 6*Z(S_n; 6 + 2*x, 12 + 4*x^2, 6 + 2*x^3, 12 + 4*x^4, ...)
+ 3*Z(S_n; 4, 12 + 4*x^2, 4, 12 + 4*x^4, ...) + 6*Z(S_n; 2, 4, 2, 12 + 4*x^4, 2, 4, 2, 12 + 4*x^8, ...)), where Z(S_n; x_1, x_2, ..., x_n) is the cycle index of the symmetric group S_n of degree n.
Showing 1-5 of 5 results.