cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A057969 5 x n binary matrices without unit columns up to row and column permutations.

Original entry on oeis.org

1, 5, 24, 115, 551, 2542, 11193, 46547, 182164, 670476, 2325506, 7624434, 23716419, 70253721, 198905506, 540079754, 1410786483, 3555443969, 8667153126, 20484365167, 47037898503, 105143200252, 229178029000
Offset: 0

Views

Author

Vladeta Jovovic, Oct 20 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 5-covers of an unlabeled n-set that cover 5 points of that set uniquely (if offset is 5).

Crossrefs

Formula

a(n)=(1/5!)*(Z(S_n; 27, 27, ...) + 10*Z(S_n; 13, 27, 13, 27, ...) + 15*Z(S_n; 7, 27, 7, 27, ...) + 20*Z(S_n; 6, 6, 27, 6, 6, 27, ...) + 20*Z(S_n; 4, 6, 13, 6, 4, 27, 4, 6, 13, 6, 4, 27, ...) + 30*Z(S_n; 3, 7, 3, 27, 3, 7, 3, 27, ...) + 24*Z(S_n; 2, 2, 2, 2, 27, 2, 2, 2, 2, 27, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. : 1/120*(1/(1 - x^1)^27 + 10/(1 - x^1)^13/(1 - x^2)^7 + 15/(1 - x^1)^7/(1 - x^2)^10 + 20/(1 - x^1)^6/(1 - x^3)^7 + 20/(1 - x^1)^4/(1 - x^2)^1/(1 - x^3)^3/(1 - x^6)^2 + 30/(1 - x^1)^3/(1 - x^2)^2/(1 - x^4)^5 + 24/(1 - x^1)^2/(1 - x^5)^5).

A057971 Number of 5 x n binary matrices with 2 unit columns up to row and column permutations.

Original entry on oeis.org

2, 18, 133, 873, 5182, 27786, 135370, 602454, 2466628, 9358497, 33134431, 110184932, 346141949, 1032550097, 2938104492, 8006865684, 20971632456, 52958252851, 129291697111, 305924724070, 703108665327, 1572722761341
Offset: 2

Views

Author

Vladeta Jovovic, Oct 21 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 5 - covers of an unlabeled n - set that cover 7 points of that set uniquely (if offset is 7).

Crossrefs

Formula

Number of 5 x n binary matrices with k unit columns up to row and column permutations is coefficient of x^k in (1/5!)*(Z(S_n; 27 + 5*x, 27 + 5*x^2, ...) + 10*Z(S_n; 13 + 3*x, 27 + 5*x^2, 13 + 3*x^3, 27 + 5*x^4, ...) + 15*Z(S_n; 7 + x, 27 + 5*x^2, 7 + x^3, 27 + 5*x^4, ...) + 20*Z(S_n; 6 + 2*x, 6 + 2*x^2, 27 + 5*x^3, 6 + 2*x^4, 6 + 2*x^5, 27 + 5*x^6, ...) +
20*Z(S_n; 4, 6 + 2*x^2, 13 + 3*x^3, 6 + 2*x^4, 4, 27 + 5*x^6, 4, 6 + 2*x^8, 13 + 3*x^9, 6 + 2*x^10, 4, 27 + 5*x^12, ...) + 30*Z(S_n; 3 + x, 7 + x^2, 3 + x^3, 27 + 5*x^4, 3 + x^5, 7 + x^6, 3 + x^7, 27 + 5*x^8, ...) + 24*Z(S_n; 2, 2, 2, 2, 27 + 5*x^5, 2, 2, 2, 2, 27 + 5*x^10, ...)),
where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f.: x^2/120*(15/(1 - x^1)^27 + 70/(1 - x^1)^13/(1 - x^2)^7 + 45/(1 - x^1)^7/(1 - x^2)^10 + 60/(1 - x^1)^6/(1 - x^3)^7 + 20/(1 - x^1)^4/(1 - x^2)^1/(1 - x^3)^3/(1 - x^6)^2 + 30/(1 - x^1)^3/(1 - x^2)^2/(1 - x^4)^5).
Showing 1-2 of 2 results.