cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000608 Number of connected partially ordered sets with n unlabeled elements.

Original entry on oeis.org

1, 1, 1, 3, 10, 44, 238, 1650, 14512, 163341, 2360719, 43944974, 1055019099, 32664984238, 1303143553205, 66900392672168, 4413439778321689
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • G. Melançon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Inverse Euler transform of A000112.
Cf. A263864 (multiset transform), A342500 (refined by rank).

Programs

Extensions

More terms from Christian G. Bower, who pointed out connection with A000112, Jan 21 1998 and Dec 12 2001
More terms from Vladeta Jovovic, Jan 04 2006; corrected Jan 15 2006

A007776 Number of connected posets with n elements of height 1.

Original entry on oeis.org

1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 2

Views

Author

Georg Wambach (gw(AT)informatik.Uni-Koeln.de)

Keywords

Comments

Inverse Euler transform of A048194 and A049312. - Detlef Pauly (dettodet(AT)yahoo.de) and Vladeta Jovovic, Jul 25 2003
Essentially the same as A318870. - Georg Fischer, Oct 02 2018
Number of connected digraphs on n unlabeled nodes where every node has indegree 0 or outdegree 0 and there are no isolated nodes. - Andrew Howroyd, Oct 03 2018

Crossrefs

Cf. A005142, A002031 (labeled case), A048194, A049312, A055192, A318870, column 1 of A342500.

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    EULERi[Array[b, 30]] // Rest (* Jean-François Alcover, Sep 16 2019, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A055192. - Andrew Howroyd, Oct 03 2018

Extensions

More terms from Vladeta Jovovic, Jul 25 2003
Offset corrected by Andrew Howroyd, Oct 03 2018

A263859 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of posets with n elements and rank k (or depth k+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 20, 31, 10, 1, 1, 55, 162, 84, 15, 1, 1, 163, 940, 734, 185, 21, 1, 1, 556, 6372, 7305, 2380, 356, 28, 1, 1, 2222, 52336, 86683, 35070, 6259, 623, 36, 1, 1, 10765, 534741, 1261371, 619489, 125597, 14258, 1016, 45, 1
Offset: 1

Views

Author

Christian Stump, Oct 28 2015

Keywords

Comments

Row sums give A000112, n >= 1.
The rank of a poset is the number of cover relations in a maximal chain.

Examples

			Triangle begins:
1,
1,1,
1,3,1,
1,8,6,1,
1,20,31,10,1,
1,55,162,84,15,1,
1,163,940,734,185,21,1,
1,556,6372,7305,2380,356,28,1,
1,2222,52336,86683,35070,6259,623,36,1,
1,10765,534741,1261371,619489,125597,14258,1016,45,1,
...
		

Crossrefs

Cf. A000112 (row sums), A342500 (connected).

Extensions

More terms from Brinkmann-McKay (2002) added by N. J. A. Sloane, Mar 18 2017

A342501 T(n,k) is the number of connected labeled posets with n elements and rank k: triangle read by rows.

Original entry on oeis.org

1, 0, 2, 0, 6, 6, 0, 38, 84, 24, 0, 390, 1710, 840, 120, 0, 6062, 49740, 36840, 8280, 720, 0, 134526, 2050566, 2184000, 646800, 85680, 5040, 0, 4172198, 118645044, 177549624, 65313360, 10735200, 947520, 40320
Offset: 1

Views

Author

R. J. Mathar, Mar 14 2021

Keywords

Comments

This is a variant of A342587 admitting only connected posets.

Examples

			The table starts in row n=1 and shows ranks k>=0:
1: 1
2: 0 2
3: 0 6 6
4: 0 38 84 24
5: 0 390 1710 840 120
6: 0 6062 49740 36840 8280 720
7: 0 134526 2050566 2184000 646800 85680 5040
8: 0 4172198 118645044 177549624 65313360 10735200 947520 40320
		

Crossrefs

Cf. A001927 (row sums), A000142 (diagonal), A002031/A002027 (rank 1), A342500 (unlabeled).

A361954 Triangle read by rows: T(n,k) is the number of unlabeled connected weakly graded (ranked) posets with n elements and rank k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 10, 23, 8, 1, 0, 27, 107, 56, 11, 1, 0, 88, 557, 388, 98, 14, 1, 0, 328, 3271, 2888, 839, 149, 17, 1, 0, 1460, 22424, 23900, 7512, 1470, 209, 20, 1, 0, 7799, 183273, 226807, 73405, 14715, 2308, 278, 23, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

Here weakly graded means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    5,    1;
  0,  10,   23,    8,   1;
  0,  27,  107,   56,  11,   1;
  0,  88,  557,  388,  98,  14,  1;
  0, 328, 3271, 2888, 839, 149, 17, 1;
  ...
		

Crossrefs

Column k=2 is A007776.
Row sums are A361955.
Cf. A342500, A361953 (not necessarily connected).

Programs

  • PARI
    \\ See PARI link in A361953 for program code.
    { my(A=A361954tabl(8)); for(i=1, #A, print(A[i, 1..i])) }

A349401 Number of unlabeled disconnected posets with n elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 19, 80, 395, 2487, 19890, 206565, 2804453, 49872647, 1158843214, 35049606566, 1374685228988, 69690886873398, 4554367168841547
Offset: 0

Views

Author

Salah Uddin Mohammad, Nov 15 2021

Keywords

Crossrefs

Formula

a(n) = A000112(n) - A000608(n).
Showing 1-6 of 6 results.