A174118 Partial sums of A000608.
1, 2, 3, 6, 16, 60, 298, 1948, 16460, 179801, 2540520, 46485494, 1101504593, 33766488831, 1336910042036, 68237302714204, 4481677081035893
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points. From _Gus Wiseman_, Aug 14 2019: (Start) Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are: {}{1}{12}{123}{1234} {}{1}{2}{12}{123}{1234} {}{1}{12}{13}{123}{1234} {}{1}{12}{123}{124}{1234} {}{1}{2}{12}{13}{123}{1234} {}{1}{2}{12}{123}{124}{1234} {}{1}{12}{13}{123}{124}{1234} {}{1}{2}{12}{13}{123}{124}{1234} {}{1}{2}{12}{13}{123}{134}{1234} {}{1}{2}{3}{12}{13}{23}{123}{1234} {}{1}{2}{12}{13}{24}{123}{124}{1234} {}{1}{12}{13}{14}{123}{124}{134}{1234} {}{1}{2}{3}{12}{13}{23}{123}{124}{1234} {}{1}{2}{12}{13}{14}{123}{124}{134}{1234} {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234} {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234} (End)
A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023}; max = Length[A001035]-1; B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}]; A[x_] = 1 + Log[B[x]]; CoefficientList[A[x] + O[x]^(max-1), x]*Range[0, max-2]! (* Jean-François Alcover, Apr 17 2014, updated Aug 30 2018 *)
Triangle begins: 1; 1, 1; 3, 1, 1; 10, 4, 1, 1; 44, 13, 4, 1, 1; ...
The table starts in row n=1 shows ranks k>=0: 1: 1 2: 0 1 3: 0 2 1 4: 0 4 5 1 5: 0 10 24 9 1 6: 0 27 123 73 14 1 7: 0 88 734 638 169 20 1 8: 0 328 5184 6460 2178 334 27 1 9: 0 1460 44518 78385 32468 5880 594 35 1 10: 0 7799 472859 1164966 581533 118933 13605 979 44 1
See Sloane's link.
The table starts 1: 1 2: 0 1 3: 0 0 3 4: 0 0 0 8 2 5: 0 0 0 0 27 12 5 6: 0 0 0 0 0 91 87 45 12 3 7: 0 0 0 0 0 0 350 532 475 201 71 14 7 8: 0 0 0 0 0 0 0 1376 3272 4298 3197 1565 554 186 44 16 4
Comments