cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A174118 Partial sums of A000608.

Original entry on oeis.org

1, 2, 3, 6, 16, 60, 298, 1948, 16460, 179801, 2540520, 46485494, 1101504593, 33766488831, 1336910042036, 68237302714204, 4481677081035893
Offset: 1

Views

Author

Jonathan Vos Post, Mar 08 2010

Keywords

Comments

Partial sums of number of connected partially ordered sets with n unlabeled elements. The subsequence of primes in this partial sum begins: 2, 3, 179801. Partial sum of Inverse Euler transform of A000112.

Crossrefs

A000112 Number of partially ordered sets ("posets") with n unlabeled elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 63, 318, 2045, 16999, 183231, 2567284, 46749427, 1104891746, 33823827452, 1338193159771, 68275077901156, 4483130665195087
Offset: 0

Views

Author

Keywords

Comments

Also number of fixed effects ANOVA models with n factors, which may be both crossed and nested.

Examples

			R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 (or 2nd. ed., Fig. 3.1, p. 243) shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of unlabeled T_0 topologies with n points. For example, non-isomorphic representatives of the a(4) = 16 topologies are:
  {}{1}{12}{123}{1234}
  {}{1}{2}{12}{123}{1234}
  {}{1}{12}{13}{123}{1234}
  {}{1}{12}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{1234}
  {}{1}{2}{12}{123}{124}{1234}
  {}{1}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{124}{1234}
  {}{1}{2}{12}{13}{123}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{1234}
  {}{1}{2}{12}{13}{24}{123}{124}{1234}
  {}{1}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{23}{123}{124}{1234}
  {}{1}{2}{12}{13}{14}{123}{124}{134}{1234}
  {}{1}{2}{3}{12}{13}{14}{23}{123}{124}{134}{1234}
  {}{1}{2}{3}{4}{12}{13}{14}{23}{24}{34}{123}{124}{134}{234}{1234}
(End)
		

References

  • G. Birkhoff, Lattice Theory, 1961, p. 4.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 60.
  • E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
  • J. L. Davison, Asymptotic enumeration of partial orders. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer. 53 (1986), 277--286. MR0885256 (88c:06001)
  • E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. I, 2nd. ed., Chap. 3, pp. 241ff; Vol. 2, Problem 5.39, p. 88.
  • For further references concerning the enumeration of topologies and posets see under A001035.

Crossrefs

Cf. A000798 (labeled topologies), A001035 (labeled posets), A001930 (unlabeled topologies), A006057.
Cf. A079263, A079265, A065066 (refined by maximal elements), A342447 (refined by number of arcs).
Row sums of A263859. Euler transform of A000608.

Extensions

a(15)-a(16) are from Brinkmann's and McKay's paper. - Vladeta Jovovic, Jan 04 2006

A001927 Number of connected partially ordered sets with n labeled points.

Original entry on oeis.org

1, 1, 2, 12, 146, 3060, 101642, 5106612, 377403266, 40299722580, 6138497261882, 1320327172853172, 397571105288091506, 166330355795371103700, 96036130723851671469482, 76070282980382554147600692, 82226869197428315925408327266, 120722306604121583767045993825620, 239727397782668638856762574296226842
Offset: 0

Views

Author

Keywords

References

  • K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000112, A001035, A000608, A066303, A342501 (refined by rank).
Sequences in the Erné (1974) paper: A000798, A001035, A006056, A006057, A001929, A001927, A006058, A006059, A000110.

Programs

  • Mathematica
    A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
    max = Length[A001035]-1;
    B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
    A[x_] = 1 + Log[B[x]];
    CoefficientList[A[x] + O[x]^(max-1), x]*Range[0, max-2]! (* Jean-François Alcover, Apr 17 2014, updated Aug 30 2018 *)

Formula

E.g.f. A(x)=log(B(x)) where B(x) is e.g.f. of A001035.

Extensions

More terms from Christian G. Bower, Dec 12 2001
a(17)-a(18) using data from A001035 from Alois P. Heinz, Aug 30 2018

A263864 Triangle read by rows: T(n,k) (n>=1, k>=1) is the number of posets with n elements whose Hasse diagram has k connected components.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 10, 4, 1, 1, 44, 13, 4, 1, 1, 238, 60, 14, 4, 1, 1, 1650, 312, 63, 14, 4, 1, 1, 14512, 2075, 328, 64, 14, 4, 1, 1, 163341, 17316, 2159, 331, 64, 14, 4, 1, 1, 2360719, 186173, 17801, 2175, 332, 64, 14, 4, 1, 1, 43944974, 2594568, 189406, 17885, 2178, 332, 64, 14, 4, 1, 1, 1055019099, 47041877
Offset: 1

Views

Author

Christian Stump, Oct 28 2015

Keywords

Comments

Multiset transformation of A000608.

Examples

			Triangle begins:
   1;
   1,  1;
   3,  1,  1;
  10,  4,  1,  1;
  44, 13,  4,  1,  1;
  ...
		

Crossrefs

Cf. A000112 (row sums), A000608 (k=1).

Extensions

More terms from R. J. Mathar, Jul 12 2020

A342500 T(n,k) is the number of connected unlabeled posets with n elements and rank k: triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 10, 24, 9, 1, 0, 27, 123, 73, 14, 1, 0, 88, 734, 638, 169, 20, 1, 0, 328, 5184, 6460, 2178, 334, 27, 1, 0, 1460, 44518, 78385, 32468, 5880, 594, 35, 1, 0, 7799, 472859, 1164966, 581533, 118933, 13605, 979, 44, 1
Offset: 1

Views

Author

R. J. Mathar, Mar 14 2021

Keywords

Comments

This is a variant of A263859 admitting only connected posets.

Examples

			The table starts in row n=1 shows ranks k>=0:
1: 1
2: 0 1
3: 0 2 1
4: 0 4 5 1
5: 0 10 24 9 1
6: 0 27 123 73 14 1
7: 0 88 734 638 169 20 1
8: 0 328 5184 6460 2178 334 27 1
9: 0 1460 44518 78385 32468 5880 594 35 1
10: 0 7799 472859 1164966 581533 118933 13605 979 44 1
		

Crossrefs

Cf. A000608 (row sums), A007776 (rank 1), A263859, A000096 (subdiagonal), A342501 (labeled).

Formula

T(n,0) = 0 for k>0; due to the connectivity constraint.
T(n,n-1) = 1; the poset with elements in a single chain.

A022017 Number of connected partially ordered sets with n "lines": pairs (a,b) where a < b and there is no c with a < c < b. The lines form the minimal basis for the partial ordering.

Original entry on oeis.org

1, 3, 8, 29, 103, 442, 1953, 9502, 48533, 262634, 1485764, 8777397, 53869119
Offset: 1

Views

Author

Keywords

Comments

The points are unlabeled.

Examples

			See Sloane's link.
		

References

  • See A000112 for references and links about partially ordered sets.

Crossrefs

Cf. A000112, A000608, A022016. Column sums of A342590.

Extensions

a(6)-a(9) from A342590. - R. J. Mathar, Mar 21 2021
a(10)-a(13) from Rico Zöllner and Konrad Handrich, Nov 19 2024

A342590 T(n,k) is the number of connected posets of n unlabeled elements with k covering relations (n>=1, k>=0). Triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 0, 8, 2, 0, 0, 0, 0, 27, 12, 5, 0, 0, 0, 0, 0, 91, 87, 45, 12, 3, 0, 0, 0, 0, 0, 0, 350, 532, 475, 201, 71, 14, 7, 0, 0, 0, 0, 0, 0, 0, 1376, 3272, 4298, 3197, 1565, 554, 186, 44, 16, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5743, 19396, 36664, 41706, 31931, 16972
Offset: 1

Views

Author

R. J. Mathar, Mar 16 2021

Keywords

Examples

			The table starts
1: 1
2: 0 1
3: 0 0 3
4: 0 0 0 8 2
5: 0 0 0 0 27 12   5
6: 0 0 0 0 0  91  87   45   12    3
7: 0 0 0 0 0   0 350  532  475  201   71   14   7
8: 0 0 0 0 0   0   0 1376 3272 4298 3197 1565 554 186 44 16 4
		

Crossrefs

Cf. A000608 (row sums), A022017 (column sums), A342447 (not necess. connected), A342588 (labeled).

A361955 Number of unlabeled connected weakly graded (ranked) posets with n elements.

Original entry on oeis.org

1, 1, 1, 3, 10, 42, 202, 1146, 7493, 56996, 508609, 5414635, 70214227, 1134439731, 23331152887, 621768153861, 21761221300058, 1009759125475973, 62534859409597022, 5193886959561972984, 580677490292990902682, 87649885799470898359728, 17907726747155924589913398
Offset: 0

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

Here weakly graded means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1.

Crossrefs

Row sums of A361954.

Programs

Formula

Inverse Euler transform of A361920.

A066305 Number of connected reduced partially ordered sets (posets) with n unlabeled elements.

Original entry on oeis.org

1, 0, 2, 5, 22, 117
Offset: 1

Views

Author

Christian G. Bower, Dec 12 2001

Keywords

Crossrefs

Cf. A000608. Inverse Euler transform of A066304.

A349401 Number of unlabeled disconnected posets with n elements.

Original entry on oeis.org

0, 0, 1, 2, 6, 19, 80, 395, 2487, 19890, 206565, 2804453, 49872647, 1158843214, 35049606566, 1374685228988, 69690886873398, 4554367168841547
Offset: 0

Views

Author

Salah Uddin Mohammad, Nov 15 2021

Keywords

Crossrefs

Formula

a(n) = A000112(n) - A000608(n).
Showing 1-10 of 11 results. Next