A376894 Stationary differences in A342447: a(n) = A342447(2k-n+1,k)-A342447(2k-n,k) which does not depend on k if k>= 2n-2 (for n>0).
1, 3, 14, 61, 273, 1228, 5631, 26141, 123261, 589251, 2855815, 14021038, 69707192
Offset: 1
Examples
See the table of A342447 1 ; 1 ; 1 1 ; 1 1 3 ; 1 1 4 8 2 ; 1 1 4 11 29 12 5 ; 1 1 4 12 43 105 92 45 12 3 ; 1 1 4 12 46 156 460 582 487 204 71 14 7 ; 1 1 4 12 47 170 670 2097 3822 4514 3271 1579 561 186 44 16 4 ; ... The differences between row j and j-1 of column k (convergence indicated by | |): 0 ; 0 ; 0 |1| ; 0 0 |3| ; 0 0 |1| 8 2 ; 0 0 0 |3| 27 12 5 ; 0 0 0 |1| |14| 93 87 45 12 ... ; 0 0 0 0 |3| 51 368 537 475 ... ; 0 0 0 0 |1| |14| 210 1515 3335 ... ; 0 0 0 0 0 |3| |61| 857 6691 ... ; 0 0 0 0 0 |1| |14| 258 3683 ... ; 0 0 0 0 0 0 |3| |61| 1127 ... ; 0 0 0 0 0 0 |1| |14| |273| ... ; a(n) = A342447(2k-n+1,k)-A342447(2k-n,k) for n>=1 e.g. for n = 2 -> k = 2n-2 = 2 a(2) = A342447(3,2) - A342447(2,2) = 3 - 0 = 3 for n = 3 -> k >= 2n-2 = 6 a(3) = A342447(10,6) - A342447(9,6) = 745 - 731 = 14
References
- R. P. Stanley, Enumerative Combinatorics I, 2nd. ed.
Extensions
a(8)-a(13) from Konrad Handrich, Jan 07 2025
Comments