cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361920 Number of unlabeled ranked posets with n elements.

Original entry on oeis.org

1, 1, 2, 5, 16, 61, 280, 1501, 9394, 68647, 591570, 6108298, 77162708, 1219779207, 24648006828, 647865966973, 22437052221282, 1032905858402302, 63591727342096158, 5258562027225785955, 586001891321599337103, 88241281449605821921186, 17996565026907866304071630
Offset: 0

Views

Author

Martin Rubey, Mar 29 2023

Keywords

Comments

A partially ordered set is ranked if there is a function from the poset elements to the integers such that the function value of a covering element is precisely one larger than the function value of the covered element. This is called graded by some authors.

Examples

			For n=5, A000112(n) - a(n) = 63 - 61 = 2 because we have 2 posets with 5 elements that are not ranked: a<b<c<d  a<e<d  and  a<c<e  a<d  b<d  b<e where < means "is covered by". - _Geoffrey Critzer_, Oct 29 2023
		

Crossrefs

Row sums of A361953.

Programs

  • PARI
    \\ See PARI link in A361953 for program code.
    A361920seq(20) \\ Andrew Howroyd, Apr 01 2023
  • Sage
    sum(1 for P in posets(n) if P.is_ranked())
    

Extensions

Terms a(8) and beyond from Andrew Howroyd, Mar 31 2023

A361954 Triangle read by rows: T(n,k) is the number of unlabeled connected weakly graded (ranked) posets with n elements and rank k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 4, 5, 1, 0, 10, 23, 8, 1, 0, 27, 107, 56, 11, 1, 0, 88, 557, 388, 98, 14, 1, 0, 328, 3271, 2888, 839, 149, 17, 1, 0, 1460, 22424, 23900, 7512, 1470, 209, 20, 1, 0, 7799, 183273, 226807, 73405, 14715, 2308, 278, 23, 1
Offset: 1

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

Here weakly graded means that there exists a rank function rk from the poset to the integers such that whenever v covers w in the poset, we have rk(v) = rk(w) + 1.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   2,    1;
  0,   4,    5,    1;
  0,  10,   23,    8,   1;
  0,  27,  107,   56,  11,   1;
  0,  88,  557,  388,  98,  14,  1;
  0, 328, 3271, 2888, 839, 149, 17, 1;
  ...
		

Crossrefs

Column k=2 is A007776.
Row sums are A361955.
Cf. A342500, A361953 (not necessarily connected).

Programs

  • PARI
    \\ See PARI link in A361953 for program code.
    { my(A=A361954tabl(8)); for(i=1, #A, print(A[i, 1..i])) }
Showing 1-2 of 2 results.