Martin Rubey has authored 9 sequences.
A362907
Number of graphs on n unlabeled nodes with treewidth 3.
Original entry on oeis.org
0, 0, 0, 0, 1, 6, 53, 501, 5889, 81786
Offset: 0
There is a single graph of treewidth 3 on 4 vertices, which is the complete graph.
A362908
Number of graphs on n unlabeled nodes with treewidth 2.
Original entry on oeis.org
0, 0, 0, 1, 4, 17, 72, 323, 1639, 9203
Offset: 0
There is a single graph of treewidth 2 on 3 vertices, which is the complete graph.
A361920
Number of unlabeled ranked posets with n elements.
Original entry on oeis.org
1, 1, 2, 5, 16, 61, 280, 1501, 9394, 68647, 591570, 6108298, 77162708, 1219779207, 24648006828, 647865966973, 22437052221282, 1032905858402302, 63591727342096158, 5258562027225785955, 586001891321599337103, 88241281449605821921186, 17996565026907866304071630
Offset: 0
For n=5, A000112(n) - a(n) = 63 - 61 = 2 because we have 2 posets with 5 elements that are not ranked: a<b<c<d a<e<d and a<c<e a<d b<d b<e where < means "is covered by". - _Geoffrey Critzer_, Oct 29 2023
A361921
The number of unlabeled bounded Eulerian posets with n elements.
Original entry on oeis.org
0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 5, 0, 11
Offset: 0
A361912
The number of unlabeled graded posets with n elements.
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 93, 354, 1621, 9110, 64801, 595976, 7204091, 115561423, 2473540433, 70853213144, 2720354016419, 140170631441858, 9702605436760235, 903309202327818566, 113234129823368903523, 19137461395401601912043, 4366007821745938984134203
Offset: 0
A289971
Number of permutations of [n] determined by their antidiagonal sums.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 49, 114, 277, 665, 1608, 3875
Offset: 0
- C. Bebeacua, T. Mansour, A. Postnikov, and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
- FindStat - Combinatorial Statistic Finder, The number of permutations with the same antidiagonal sums.
- Martin Rubey, Alternating Sign Matrices Through X-Rays, J. Int. Seq., Vol. 24 (2021), Article 21.6.5.
-
xray[perm_List] := Module[{P, n = Length[perm]}, P[, ] = 0; Thread[perm -> Range[n]] /. Rule[i_, j_] :> Set[P[i, j], 1]; Table[Sum[P[i - j + 1, j], {j, Max[1, i - n + 1], Min[i, n]}], {i, 1, 2n - 1}]];
a[n_] := xray /@ Permutations[Range[n]] // Tally // Count[#, {_List, 1}]&;
Do[Print[n, " ", a[n]], {n, 0, 10}] (* Jean-François Alcover, Feb 28 2020 *)
-
def X_ray(pi):
P = Permutation(pi).to_matrix()
n = P.nrows()
return tuple(sum(P[k-1-j][j] for j in range(max(0, k-n), min(k,n)))
for k in range(1,2*n))
@cached_function
def X_rays(n):
return sorted(X_ray(pi) for pi in Permutations(n))
def statistic(pi): return X_rays(pi.size()).count(X_ray(pi))
[[statistic(pi) for pi in Permutations(n)].count(1) for n in range(7)]
A269890
Number of conjugacy classes of subgroups of the hyperoctahedral group.
Original entry on oeis.org
2, 8, 33, 193, 953, 7440, 55200, 627187, 7510549
Offset: 1
-
Length(ConjugacyClassesSubgroups(CoxeterGroup( "B", n )));
-
[#Subgroups(CoxeterGroup("B" cat IntegerToString(n))) : n in [1..9]]; // Robin Visser, Aug 09 2023
A181519
Number of torsion pairs in the cluster category of type A_n up to Auslander-Reiten translation.
Original entry on oeis.org
1, 3, 5, 19, 62, 301, 1413, 7304, 38294, 208052, 1149018, 6466761, 36899604, 213245389, 1245624985, 7345962126, 43688266206, 261791220038, 1579363550250, 9586582997562, 58513327318992, 358957495385684, 2212294939905234
Offset: 3
For n=5 there are 5 Ptolemy diagrams up to rotation: the pentagon with no diagonal, the pentagon with one diagonal, the pentagon with two noncrossing diagonals, the pentagon with three diagonals and the pentagon with all five diagonals.
-
seq(n)={my(p=serreverse(x - x^2*(1 + x)/(1 - x) + O(x*x^n)), P(d)=subst(p + O(x^(n\d+1)), x, x^d)); Vec(2*sum(d=1, n, eulerphi(d)/d*log(1/(1-P(d)))) - (P(1)^3 + 2*P(3))/3 - (3*P(1)^2+P(2))/2 - (2 - x)*P(1) - x^2)} \\ Andrew Howroyd, May 09 2023
A181517
Number of torsion pairs in the cluster category of type A_n.
Original entry on oeis.org
1, 4, 17, 82, 422, 2274, 12665, 72326, 421214, 2492112, 14937210, 90508256, 553492552, 3411758334, 21175624713, 132226234854, 830077057878, 5235817447752, 33166634502334, 210904780742860, 1345806528336772, 8614979593487972, 55307373497626442, 356012579697723084
Offset: 3
For n=4 there are 4 Ptolemy diagrams: the square with no diagonal, two diagrams with one diagonal, and the square with both diagonals .
-
a(n) = n-=3; sum(i=0, floor((n+1)/2), 2^i*binomial(n+1+i,i)*binomial(2*n+2,n+1-2*i))/(n+2); \\ Michel Marcus, Jan 14 2012; corrected Jun 13 2022
-
seq(n) = Vec(x*(serreverse(x - x^2*(1 + x)/(1 - x) + O(x^(n+2))) - x)) \\ Andrew Howroyd, May 09 2023
Comments