A000798
Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.
Original entry on oeis.org
1, 1, 4, 29, 355, 6942, 209527, 9535241, 642779354, 63260289423, 8977053873043, 1816846038736192, 519355571065774021, 207881393656668953041, 115617051977054267807460, 88736269118586244492485121, 93411113411710039565210494095, 134137950093337880672321868725846, 261492535743634374805066126901117203
Offset: 0
From _Gus Wiseman_, Aug 01 2019: (Start)
The a(3) = 29 topologies are the following (empty sets not shown):
{123} {1}{123} {1}{12}{123} {1}{2}{12}{123} {1}{2}{12}{13}{123}
{2}{123} {1}{13}{123} {1}{3}{13}{123} {1}{2}{12}{23}{123}
{3}{123} {1}{23}{123} {2}{3}{23}{123} {1}{3}{12}{13}{123}
{12}{123} {2}{12}{123} {1}{12}{13}{123} {1}{3}{13}{23}{123}
{13}{123} {2}{13}{123} {2}{12}{23}{123} {2}{3}{12}{23}{123}
{23}{123} {2}{23}{123} {3}{13}{23}{123} {2}{3}{13}{23}{123}
{3}{12}{123}
{3}{13}{123} {1}{2}{3}{12}{13}{23}{123}
{3}{23}{123}
(End)
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 229.
- E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 243.
- Levinson, H.; Silverman, R. Topologies on finite sets. II. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 699--712, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561090 (81c:54006)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- For further references concerning the enumeration of topologies and posets see under A001035.
- G.H. Patil and M.S. Chaudhary, A recursive determination of topologies on finite sets, Indian Journal of Pure and Applied Mathematics, 26, No. 2 (1995), 143-148.
- V. I. Arnautov and A. V. Kochina, Method for constructing one-point expansions of a topology on a finite set and its applications, Bul. Acad. Stiinte Republ. Moldav. Matem. 3 (64) (2010) 67-76.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- Moussa Benoumhani and Ali Jaballah, Chains in lattices of mappings and finite fuzzy topological spaces, Journal of Combinatorial Theory, Series A (2019) Vol. 161, 99-111.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5.
- Juliana Bowles and Marco B. Caminati, A Verified Algorithm Enumerating Event Structures, arXiv:1705.07228 [cs.LO], 2017.
- Gunnar Brinkmann and Brendan D. McKay, Posets on up to 16 points.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179 (Table IV).
- J. I. Brown and S. Watson, The number of complements of a topology on n points is at least 2^n (except for some special cases), Discr. Math., 154 (1996), 27-39.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966 [Annotated scanned copy]
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
- E. D. Cooper, Representation and generation of finite partially ordered sets, Manuscript, no date [Annotated scanned copy]
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, The number of partially ordered (labeled) sets, Preprint, 1989. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313. [Annotated scanned copy]
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313.
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- Loic Foissy, Claudia Malvenuto, and Frederic Patras, B_infinity-algebras, their enveloping algebras, and finite spaces, arXiv preprint arXiv:1403.7488 [math.AT], 2014.
- Loic Foissy, Claudia Malvenuto, and Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
- L. Foissy and C. Malvenuto, The Hopf algebra of finite topologies and T-partitions, arXiv preprint arXiv:1407.0476 [math.RA], 2014.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961. [Annotated scanned copy]
- S. Giraudo, J.-G. Luque, L. Mignot and F. Nicart, Operads, quasiorders and regular languages, arXiv preprint arXiv:1401.2010 [cs.FL], 2014.
- D. J. Greenhoe, Properties of distance spaces with power triangle inequalities, ResearchGate, 2015.
- J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
- Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers
- G. A. Kamel, Partial Chain Topologies on Finite Sets, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
- Dongseok Kim, Young Soo Kwon and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550[math.CO], 2012.
- M. Y. Kizmaz, On The Number Of Topologies On A Finite Set, arXiv preprint arXiv:1503.08359 [math.NT], 2015-2019.
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
- D. J. Kleitman and B. L. Rothschild, The number of finite topologies, Proc. Amer. Math. Soc., 25 (1970), 276-282.
- Messaoud Kolli, Direct and Elementary Approach to Enumerate Topologies on a Finite Set, J. Integer Sequences, Volume 10, 2007, Article 07.3.1.
- Messaoud Kolli, On the cardinality of the T_0-topologies on a finite set, International Journal of Combinatorics, Volume 2014 (2014), Article ID 798074, 7 pages.
- Sami Lazaar, Houssem Sabri, and Randa Tahri, Structural and Numerical Studies of Some Topological Properties for Alexandroff Spaces, Bull. Iran. Math. Soc. (2021).
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- M. Rayburn, On the Borel fields of a finite set, Proc. Amer. Math.. Soc., 19 (1968), 885-889. [Annotated scanned copy]
- M. Rayburn and N. J. A. Sloane, Correspondence, 1974
- D. Rusin, More info and references [Broken link]
- D. Rusin, More info and references [Cached copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198. [Annotated scanned copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- N. J. A. Sloane, Classic Sequences
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 8 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Swartz and Nicholas J. Werner, Zero pattern matrix rings, reachable pairs in digraphs, and Sharp's topological invariant tau, arXiv:1709.05390 [math.CO], 2017.
- Ivo Terek, Smooth Manifolds, Williams College (2025). See p. 6.
- Wietske Visser, Koen V. Hindriks and Catholijn M. Jonker, Goal-based Qualitative Preference Systems, 2012.
- N. L. White, Two letters to N. J. A. Sloane, 1970, with hand-drawn enclosure
- J. A. Wright, Letter to N. J. A. Sloane, Nov 21 1970, with four enclosures
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Two related abstracts, 1970 and 1972 [Annotated scanned copies]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for "core" sequences
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union[Union@@@Tuples[#,2],DeleteCases[Intersection@@@Tuples[#,2],{}]]]&]],{n,0,3}] (* Gus Wiseman, Aug 01 2019 *)
Two more terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) are from Brinkmann's and McKay's paper. -
Vladeta Jovovic, Jun 10 2007
A001035
Number of partially ordered sets ("posets") with n labeled elements (or labeled acyclic transitive digraphs).
Original entry on oeis.org
1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023
Offset: 0
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, page 98, Fig. 3-1 shows the unlabeled posets with <= 4 points.
From _Gus Wiseman_, Aug 14 2019: (Start)
Also the number of T_0 topologies with n points. For example, the a(0) = 1 through a(3) = 19 topologies are:
{} {}{1} {}{1}{12} {}{1}{12}{123}
{}{2}{12} {}{1}{13}{123}
{}{1}{2}{12} {}{2}{12}{123}
{}{2}{23}{123}
{}{3}{13}{123}
{}{3}{23}{123}
{}{1}{2}{12}{123}
{}{1}{3}{13}{123}
{}{2}{3}{23}{123}
{}{1}{12}{13}{123}
{}{2}{12}{23}{123}
{}{3}{13}{23}{123}
{}{1}{2}{12}{13}{123}
{}{1}{2}{12}{23}{123}
{}{1}{3}{12}{13}{123}
{}{1}{3}{13}{23}{123}
{}{2}{3}{12}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
(End)
- G. Birkhoff, Lattice Theory, Amer. Math. Soc., 1961, p. 4.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 427.
- K. K.-H. Butler, A Moore-Penrose inverse for Boolean relation matrices, pp. 18-28 of Combinatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K. H. Butler and G. Markowsky. "The number of partially ordered sets. I." Journal of Korean Mathematical Society 11.1 (1974).
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 60, 229.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf endlichen Mengen, PhD dissertation, Westfälische Wilhelms-Universität zu Münster, 1972.
- M. Erné and K. Stege, The number of labeled orders on fifteen elements, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, Chap. 3, pages 96ff; Vol. 2, Problem 5.39, p. 88.
- Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
- Juliana Bowles and Marco B. Caminati, A Verified Algorithm Enumerating Event Structures, arXiv:1705.07228 [cs.LO], 2017.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179.
- J. I. Brown and S. Watson, The number of complements of a topology on n points is at least 2^n (except for some special cases), Discr. Math., 154 (1996), 27-39.
- K. K.-H. Butler, The number of partially ordered sets, Journal of Combinatorial Theory, Series B 13.3 (1972): 276-289.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- K. K.-H. Butler and G. Markowsky, The number of partially ordered sets. II., J. Korean Math. Soc 11 (1974): 7-17.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. D. Chatterji, The number of topologies on n points, Manuscript, 1966. [Annotated scanned copy]
- Narendrakumar R. Dasre and Pritam Gujarathi, Approximating the Bounds for Number of Partially Ordered Sets with n Labeled Elements, Computing in Engineering and Technology, Advances in Intelligent Systems and Computing, Vol. 1025, Springer (Singapore 2019), 349-356.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, The number of partially ordered (labeled) sets, Preprint, 1989. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313.
- J. W. Evans, F. Harary and M. S. Lynn, On the computer enumeration of finite topologies, Commun. ACM, 10 (1967), 295-297, 313. [Annotated scanned copy]
- S. R. Finch, Transitive relations, topologies and partial orders.
- S. R. Finch, Transitive relations, topologies and partialorders, June 5, 2003. [Cached copy, with permission of the author]
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Didier Garcia, Proof of a(19) formula [in French].
- Didier Garcia, Two conjectures concerning a(n) [in French].
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- G. Grekos, Letter to N. J. A. Sloane, Oct 31 1994, with attachments.
- J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
- Richard Kenyon, Maxim Kontsevich, Oleg Ogievetsky, Cosmin Pohoata, Will Sawin, and Senya Shlosman, The miracle of integer eigenvalues, arXiv:2401.05291 [math.CO], 2024. See p. 4.
- Dongseok Kim, Young Soo Kwon, and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550 [math.CO], 2012. - From _N. J. A. Sloane_, Nov 09 2012
- M. Y. Kizmaz, On The Number Of Topologies On A Finite Set, arXiv preprint arXiv:1503.08359 [math.NT], 2015.
- D. J. Kleitman and B. L. Rothschild, Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc., 205 (1975) 205-220.
- G. Kreweras, Dénombrement des ordres étagés, Discrete Math., 53 (1985), 147-149.
- Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers.
- Sami Lazaar, Houssem Sabri, and Randa Tahri, Structural and Numerical Studies of Some Topological Properties for Alexandroff Spaces, Bull. Iran. Math. Soc. (2021).
- N. Lygeros and P. Zimmermann, Computation of P(14), the number of posets with 14 elements: 1.338.193.159.771.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Bob Proctor, Chapel Hill Poset Atlas.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
- Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971.
- D. Rusin, Further information and references. [Broken link]
- D. Rusin, Further information and references. [Cached copy]
- A. Shafaat, On the number of topologies definable for a finite set, J. Austral. Math. Soc., 8 (1968), 194-198.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972.
- N. J. A. Sloane, Classic Sequences.
- Gus Wiseman, Hasse diagrams of the a(4) = 219 posets.
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970. [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences.
- Index entries for sequences related to posets
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&MemberQ[#,Range[n]]&&UnsameQ@@dual[#]&&SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
a(15)-a(16) from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Jul 03 2000
a(17)-a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 02 2008
A001930
Number of topologies, or transitive digraphs with n unlabeled nodes.
Original entry on oeis.org
1, 1, 3, 9, 33, 139, 718, 4535, 35979, 363083, 4717687, 79501654, 1744252509, 49872339897, 1856792610995, 89847422244493, 5637294117525695
Offset: 0
From _Gus Wiseman_, Aug 02 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(3) = 9 topologies:
{} {}{1} {}{12} {}{123}
{}{2}{12} {}{3}{123}
{}{1}{2}{12} {}{23}{123}
{}{1}{23}{123}
{}{3}{23}{123}
{}{2}{3}{23}{123}
{}{3}{13}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
(End)
- Loic Foissy, Claudia Malvenuto, Frederic Patras, Infinitesimal and B_infinity-algebras, finite spaces, and quasi-symmetric functions, Journal of Pure and Applied Algebra, Elsevier, 2016, 220 (6), pp. 2434-2458. .
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (but the last entry is wrong).
- M. Kolli, On the cardinality of the T_0-topologies on a finite set, Preprint, 2014.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
- J. A. Wright, personal communication.
- For further references concerning the enumeration of topologies and posets see under A000112 and A001035.
- C. M. Bender et al., Combinatorics and field theory, arXiv:quant-ph/0604164, 2006.
- Moussa Benoumhani, The Number of Topologies on a Finite Set, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.6.
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5
- Gunnar Brinkmann and Brendan D. McKay, Counting unlabeled topologies and transitive relations.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- Gunnar Brinkmann and Brendan D. McKay, Counting Unlabelled Topologies and Transitive Relations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.1.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- S. R. Finch, Transitive relations, topologies and partial orders
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- L. Foissy, C. Malvenuto, and F. Patras, B_infinity-algebras, their enveloping algebras, and finite spaces, arXiv preprint arXiv:1403.7488 [math.AT], 2014-2015.
- Misha Gavrilovich and Misha Rabinovich, The Quillen negation monoid of a category, and Schreier graphs of its action on classes of morphisms, 2024. See p. 11.
- Dongseok Kim, Young Soo Kwon and Jaeun Lee, Enumerations of finite topologies associated with a finite graph, arXiv preprint arXiv:1206.0550, 2012. - From _N. J. A. Sloane_, Nov 09 2012
- Messaoud Kolli, Direct and Elementary Approach to Enumerate Topologies on a Finite Set, J. Integer Sequences, Volume 10, 2007, Article 07.3.1.
- G. Pfeiffer, Counting Transitive Relations, preprint, 2004.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- D. Rusin, Further information and references [Broken link]
- D. Rusin, Further information and references [Cached copy]
- Henry Sharp, Jr., Quasi-orderings and topologies on finite sets, Proceedings of the American Mathematical Society 17.6 (1966): 1344-1349. [Annotated scanned copy]
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- N. J. A. Sloane, Classic Sequences
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 8 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Swartz and Nicholas J. Werner, Zero pattern matrix rings, reachable pairs in digraphs, and Sharp's topological invariant tau, arXiv:1709.05390 [math.CO], 2017.
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- R. H. Warren, The number of topologies, Houston J. Math., 8 (No. 2, 1982), 297-301. Mentions a(4)=33. [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Digraph Topology.
- R. H. Warren, The number of topologies, Houston J. Math., 8 (No. 2, 1982), 297-301. Mentions a(4)=33. [Annotated scanned copy]
- Wikipedia Topological space
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
The case with unions only is
A108798.
The case with intersections only is (also)
A108798.
Partial sums are
A326898 (the non-covering case).
a(8)-a(12) from Goetz Pfeiffer (goetz.pfeiffer(AT)nuigalway.ie), Jan 21 2004
a(13)-a(16) from Brinkmann's and McKay's paper, sent by
Vladeta Jovovic, Jan 04 2006
A001927
Number of connected partially ordered sets with n labeled points.
Original entry on oeis.org
1, 1, 2, 12, 146, 3060, 101642, 5106612, 377403266, 40299722580, 6138497261882, 1320327172853172, 397571105288091506, 166330355795371103700, 96036130723851671469482, 76070282980382554147600692, 82226869197428315925408327266, 120722306604121583767045993825620, 239727397782668638856762574296226842
Offset: 0
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. M. Bender et al., Combinatorics and field theory, arXiv:quant-ph/0604164, 2006.
- G. Brinkmann, B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179 (Table II, up to 18 points)
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
-
A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
max = Length[A001035]-1;
B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
A[x_] = 1 + Log[B[x]];
CoefficientList[A[x] + O[x]^(max-1), x]*Range[0, max-2]! (* Jean-François Alcover, Apr 17 2014, updated Aug 30 2018 *)
A001929
Number of connected topologies on n labeled points.
Original entry on oeis.org
1, 1, 3, 19, 233, 4851, 158175, 7724333, 550898367, 56536880923, 8267519506789, 1709320029453719, 496139872875425839, 200807248677750187825, 112602879608997769049739, 86955243134629606109442219, 91962123875462441868790125305, 132524871920295877733718959290203, 259048612476248175744581063815546423
Offset: 0
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. M. Bender et al., Combinatorics and Field theory, arXiv:quant-ph/0604164, 2006.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179, Table IV up to 18 points
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259.
- M. Erné, Struktur- und Anzahlformeln für Topologien auf Endlichen Mengen, Manuscripta Math., 11 (1974), 221-259. (Annotated scanned copy)
- M. Erné and K. Stege, Counting Finite Posets and Topologies, Order, 8 (1991), 247-265.
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970 [Annotated scanned copy]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
-
A001035 = {1, 1, 3, 19, 219, 4231, 130023, 6129859, 431723379, 44511042511, 6611065248783, 1396281677105899, 414864951055853499, 171850728381587059351, 98484324257128207032183, 77567171020440688353049939, 83480529785490157813844256579, 122152541250295322862941281269151, 241939392597201176602897820148085023};
max = Length[A001035]-1;
B[x_] = Sum[A001035[[k+1]]*x^k/k!, {k, 0, max}];
A[x_] = 1 + Log[B[x]];
A001927 = CoefficientList[ A[x] + O[x]^(max-1), x]*Range[0, max-2]!;
a[n_] := Sum[StirlingS2[n, k] *A001927[[k+1]], {k, 0, n}];
Table[a[n], {n, 0, max -2}] (* Jean-François Alcover, Aug 30 2018, after Vladeta Jovovic *)
A121337
Number of idempotent relations on n labeled elements.
Original entry on oeis.org
1, 2, 11, 123, 2360, 73023, 3465357
Offset: 0
Florian Kammüller (flokam(AT)cs.tu-berlin.de), Aug 28 2006
a(2) = 11 because given a set {a,b} of two elements, of the 2^(2*2) = 16 relations on the set, only 5 are not idempotent. - _Michael Somos_, Jul 28 2013
These 5 relations that are not idempotent are: {(a,b)}, {(b,a)}, {(a,b),(b,a)}, {(a,b),(b,a),(b,b)}, {(a,a),(a,b),(b,a)}. - _Geoffrey Critzer_, Aug 07 2016
- F. Kammüller, Interactive Theorem Proving in Software Engineering, Habilitationsschrift, Technische Universitaet Berlin (2006).
- Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Decker, 1982.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- K. K.-H. Butler and G. Markowsky, The Number of Maximal Subgroups of the Semigroup of Binary Relations, Kyungpook Math. J. Vol 12, June 1972.
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- F. Kammüller, Counting idempotent relations.
- F. Kammüller and J. W. Sanders, Idempotent relations in Isabelle/HOL, International Colloquium on Theoretical Aspects of Computing, ICTAC'04. Volume 3407 of Lecture Notes in Computer Science, Springer-Verlag (2005).
- G. Pfeiffer, Counting transitive relations, J. Integer Sequences, Volume 7, 2004, #3.
- D. Rosenblatt, On the graphs of finite Boolean relation matrices, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
- B. M. Schein, A construction for idempotent binary relations, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247.
-
Prepend[Table[Length[Select[Tuples[Tuples[{0, 1}, n], n], (MatrixPower[#, 2] /. x_ /; x > 0 -> 1) == # &]], {n, 1, 4}], 1] (* Geoffrey Critzer, Aug 07 2016 *)
A000608
Number of connected partially ordered sets with n unlabeled elements.
Original entry on oeis.org
1, 1, 1, 3, 10, 44, 238, 1650, 14512, 163341, 2360719, 43944974, 1055019099, 32664984238, 1303143553205, 66900392672168, 4413439778321689
Offset: 0
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961.
- G. Melançon, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Gunnar Brinkmann and Brendan D. McKay, Counting unlabeled topologies and transitive relations.
- G. Brinkmann and B. D. McKay, Counting unlabeled topologies and transitive relations, J. Integer Sequences, Volume 8, 2005.
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points [On Brendan McKay's home page]
- G. Brinkmann and B. D. McKay, Posets on up to 16 Points, Order 19 (2) (2002) 147-179.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184.
- K. K.-H. Butler and G. Markowsky, Enumeration of finite topologies, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 169-184. [Annotated scan of pages 180 and 183 only]
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- E. N. Gilbert, A catalog of partially ordered systems, unpublished memorandum, Aug 08, 1961. [Annotated scanned copy]
- Henry Sharp, Jr., Quasi-orderings and topologies on finite sets, Proceedings of the American Mathematical Society 17.6 (1966): 1344-1349. [Annotated scanned copy]
- N. J. A. Sloane, List of sequences related to partial orders, circa 1972
- N. J. A. Sloane, Transforms
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 10 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- N. L. White, Two letters to N. J. A. Sloane, 1970, with hand-drawn enclosure
- Wikipedia, Illustration n=4, Illustration n=5, Illustration n=6" (2021)
- J. A. Wright, There are 718 6-point topologies, quasiorderings and transgraphs, Preprint, 1970. [Annotated scanned copy]
- J. A. Wright, There are 718 6-point topologies, quasi-orderings and transgraphs, Notices Amer. Math. Soc., 17 (1970), p. 646, Abstract #70T-A106.
- J. A. Wright, Two related abstracts, 1970 and 1972 [Annotated scanned copies]
- J. A. Wright, Letter to N. J. A. Sloane, Apr 06 1972, listing 18 sequences
- Index entries for sequences related to posets
Inverse Euler transform of
A000112.
A245567
Number of antichain covers of a labeled n-set such that for every two distinct elements in the n-set, there is a set in the antichain cover containing one of the elements but not the other.
Original entry on oeis.org
2, 1, 1, 5, 76, 5993, 7689745, 2414465044600, 56130437141763247212112, 286386577668298408602599478477358234902247
Offset: 0
For n = 0, a(0) = 2 by the antisets {}, {{}}.
For n = 1, a(1) = 1 by the antiset {{1}}.
For n = 2, a(2) = 1 by the antiset {{1},{2}}.
For n = 3, a(3) = 5 by the antisets {{1},{2},{3}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}.
Cf.
A000372 (Dedekind numbers),
A006126 (Number of antichain covers of a labeled n-set).
Sequences counting and ranking T_0 structures:
A309615 (covering set-systems closed under intersection),
A319559 (unlabeled set-systems by weight),
A319637 (unlabeled covering set-systems),
A326939 (covering sets of subsets),
A326943 (covering sets of subsets closed under intersection),
A326944 (covering sets of subsets with {} and closed under intersection),
A326945 (sets of subsets closed under intersection),
A326947 (BII-numbers of set-systems),
A326949 (unlabeled sets of subsets),
A326959 (set-systems closed under intersection),
A327013 (unlabeled covering set-systems closed under intersection),
A327016 (BII-numbers of topologies).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 14 2019 *)
A006455
Number of partial orders on {1,2,...,n} that are contained in the usual linear order (i.e., xRy => x
Original entry on oeis.org
1, 1, 2, 7, 40, 357, 4824, 96428, 2800472, 116473461, 6855780268, 565505147444, 64824245807684
Offset: 0
a(3) = 7: {}, {1R2}, {1R3}, {2R3}, {1R2, 1R3}, {1R3, 2R3}, {1R2, 1R3, 2R3}.
- N. B. Hindman, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. P. Avann, The lattice of natural partial orders, Aequationes Mathematicae 8 (1972), 95-102.
- David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
- Graham Brightwell, Hans Jürgen Prömel and Angelika Steger, The average number of linear extensions of a partial order, Journal of Combinatorial Theory A73 (1996), 193-206.
- S. R. Finch, Transitive relations, topologies and partial orders
- S. R. Finch, Transitive relations, topologies and partial orders, June 5, 2003. [Cached copy, with permission of the author]
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- L. H. Harper, The Range of a Steiner Operation, arXiv preprint arXiv:1608.07747 [math.CO], 2016.
- N. Hindman and N. J. A. Sloane, Correspondence, 1981-1991
- Florent Hivert and Nicolas M. Thiéry, Controlling the C3 Super Class Linearization Algorithm for Large Hierarchies of Classes, Order (2022).
- Adam King, A. Laubmeier, K. Orans, and A. Godbole, Universal and Overlap Cycles for Posets, Words, and Juggling Patterns, arXiv preprint arXiv:1405.5938 [math.CO], 2014.
- D. E. Knuth, POSETS, program for n = 10, 11, 12.
- J.-G. Luque, L. Mignot and F. Nicart, Some Combinatorial Operators in Language Theory, arXiv preprint arXiv:1205.3371 [cs.FL], 2012. - _N. J. A. Sloane_, Oct 22 2012
- Index entries for sequences related to posets
Additional comments and more terms from
Don Knuth, Dec 03 2001
A048172
Number of labeled series-parallel graphs with n edges.
Original entry on oeis.org
1, 3, 19, 195, 2791, 51303, 1152019, 30564075, 935494831, 32447734143, 1257770533339, 53884306900515, 2528224238464471, 128934398091500823, 7101273378743303779, 420078397130637237915, 26563302733186339752511, 1788055775343964413724143, 127652707703771090396080939
Offset: 1
- Ronald C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, Research Report CORR 91-19, University of Waterloo, Sept 1991.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39.
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
- Frédéric Fauvet, L. Foissy, D. Manchon, Operads of finite posets, arXiv preprint arXiv:1604.08149 [math.CO], 2016.
- S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Vladimir Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299
- Index entries for reversions of series
- Index entries for sequences related to posets
-
with(gfun):
f := series((ln(1+x)-x^2/(1+x)), x, 21):
egf := seriestoseries(f, 'revogf'):
seriestolist(egf, 'Laplace');
-
lim = 19; Join[{1}, Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, lim}], y] + InverseSeries[ Series[-Log[1 - x] - x^2/(1 - x),{x, 0, lim}], y], y], 2]*Range[2, lim]!] (* Jean-François Alcover, Sep 21 2011, after g.f. *)
m = 17; Rest[CoefficientList[InverseSeries[Series[Log[1+x]-x^2/(1+x), {x, 0, m}], x], x]*Table[k!,{k, 0, m}]](* Jean-François Alcover, Apr 18 2011 *)
-
h(n,k):=if n=k then 0 else (-1)^(n-k)*binomial(n-k-1,k-1); a(n):=if n=1 then 1 else -sum((k!/n!*stirling1(n,k)+sum(binomial(k,j)*sum((j)!/(i)!*stirling1(i,j)*h(n-i,k-j),i,j,n-k+j),j,1,k-1)+h(n,k))*a(k),k,1,n-1); /* Vladimir Kruchinin, Sep 08 2010 */
-
x='x+O('x^55);
s=-log(1-x)-x^2/(1-x);
A048174=Vec(serlaplace(serreverse(s)));
t=x+2*(1-cosh(x));
A058349=Vec(serlaplace(serreverse(t)));
A048172=A048174+A058349; A048172[1]-=1;
A048172 /* Joerg Arndt, Feb 04 2011 */
Showing 1-10 of 60 results.
Comments