cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A059201 Number of T_0-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jan 16 2001

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.
From Gus Wiseman, Aug 13 2019: (Start)
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges). For example, the a(2) = 4 covers are:
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
(End)

Crossrefs

Row sums of A059202.
Covering set-systems are A003465.
The unlabeled version is A319637.
The version with empty edges allowed is A326939.
The non-covering version is A326940.
BII-numbers of T_0 set-systems are A326947.
The same with connected instead of covering is A326948.
The T_1 version is A326961.

Programs

  • Mathematica
    Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)

Formula

a(n) = Sum_{i=0..n+1} stirling1(n+1, i)*2^(2^(i-1)-1).
a(n) = Sum_{m=0..2^n-1} A059202(n,m).
Inverse binomial transform of A326940 and exponential transform of A326948. - Gus Wiseman, Aug 13 2019

A326946 Number of unlabeled T_0 set-systems on n vertices.

Original entry on oeis.org

1, 2, 5, 34, 1919, 18660178
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{1},{2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A000612.
The antichain case is A245567.
The covering case is A319637.
The labeled version is A326940.
The version with empty edges allowed is A326949.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Union[normclut/@Select[Subsets[Subsets[Range[n],{1,n}]],UnsameQ@@dual[#]&]]],{n,0,3}]

Formula

Partial sums of A319637.
a(n) = A326949(n)/2.

Extensions

a(5) from Max Alekseyev, Oct 11 2023

A326943 Number of T_0 sets of subsets of {1..n} that cover all n vertices and are closed under intersection.

Original entry on oeis.org

2, 2, 6, 70, 4078, 2704780, 151890105214, 28175292217767880450
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 2 through a(3) = 6 sets of subsets:
  {}    {{1}}     {{1},{1,2}}
  {{}}  {{},{1}}  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A326906.
The case without empty edges is A309615.
The non-covering version is A326945.
The version not closed under intersection is A326939.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

Inverse binomial transform of A326945.
a(n) = Sum_{k=0..n} Stirling1(n,k)*A326906(k). - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 14 2019

A326944 Number of T_0 sets of subsets of {1..n} that cover all n vertices, contain {}, and are closed under intersection.

Original entry on oeis.org

1, 1, 4, 58, 3846, 2685550, 151873991914, 28175291154649937052
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(2) = 4 sets of subsets:
  {{}}  {{},{1}}  {{},{1},{2}}
                  {{},{1},{1,2}}
                  {{},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The version not closed under intersection is A059201.
The non-T_0 version is A326881.
The version where {} is not necessarily an edge is A326943.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n]]],MemberQ[#,{}]&&Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*A326881(k). - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(7) from Andrew Howroyd, Aug 14 2019

A327057 Number of antichains covering a subset of {1..n} where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 2, 4, 9, 36, 1572, 3750221
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other. This sequence counts antichains whose dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(3) = 9 antichains:
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains are A000372.
The BII-numbers of these set-systems are the intersection of A326704 and A326853.
The covering case is A327020.
Cointersecting set-systems are A327039.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,5}]

Formula

Binomial transform of A327020.

A326949 Number of unlabeled T_0 sets of subsets of {1..n}.

Original entry on oeis.org

2, 4, 10, 68, 3838, 37320356
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			Non-isomorphic representatives of the a(0) = 2 through a(2) = 10 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{},{1}}
                  {{1},{2}}
                  {{2},{1,2}}
                  {{},{1},{2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
		

Crossrefs

The non-T_0 version is A003180.
The labeled version is A326941.
The covering case is A326942 (first differences).
The case without empty edges is A326946.

Formula

a(n) = 2 * A326946(n).

Extensions

a(5) from Max Alekseyev, Oct 11 2023

A326950 Number of T_0 antichains of nonempty subsets of {1..n}.

Original entry on oeis.org

1, 2, 4, 12, 107, 6439, 7726965, 2414519001532, 56130437161079183223017, 286386577668298409107773412840148848120595
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(3) = 12 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1},{2}}  {{3}}
                        {{1},{2}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1,2},{1,3}}
                        {{1,2},{2,3}}
                        {{1},{2},{3}}
                        {{1,3},{2,3}}
                        {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains of nonempty sets are A014466.
T_0 set-systems are A326940.
The covering case is A245567.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Binomial transform of A245567, if we assume A245567(0) = 1.

Extensions

a(5)-a(8) from Andrew Howroyd, Aug 14 2019
a(9), based on A245567, from Patrick De Causmaecker, Jun 01 2023

A326948 Number of connected T_0 set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
Offset: 0

Views

Author

Gus Wiseman, Aug 08 2019

Keywords

Comments

The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(3) = 86 set-systems:
  {12}{13}         {1}{2}{13}{123}     {1}{2}{3}{13}{23}
  {12}{23}         {1}{2}{23}{123}     {1}{2}{3}{13}{123}
  {13}{23}         {1}{3}{12}{13}      {1}{2}{3}{23}{123}
  {1}{2}{123}      {1}{3}{12}{23}      {1}{2}{12}{13}{23}
  {1}{3}{123}      {1}{3}{12}{123}     {1}{2}{12}{13}{123}
  {1}{12}{13}      {1}{3}{13}{23}      {1}{2}{12}{23}{123}
  {1}{12}{23}      {1}{3}{13}{123}     {1}{2}{13}{23}{123}
  {1}{12}{123}     {1}{3}{23}{123}     {1}{3}{12}{13}{23}
  {1}{13}{23}      {1}{12}{13}{23}     {1}{3}{12}{13}{123}
  {1}{13}{123}     {1}{12}{13}{123}    {1}{3}{12}{23}{123}
  {2}{3}{123}      {1}{12}{23}{123}    {1}{3}{13}{23}{123}
  {2}{12}{13}      {1}{13}{23}{123}    {1}{12}{13}{23}{123}
  {2}{12}{23}      {2}{3}{12}{13}      {2}{3}{12}{13}{23}
  {2}{12}{123}     {2}{3}{12}{23}      {2}{3}{12}{13}{123}
  {2}{13}{23}      {2}{3}{12}{123}     {2}{3}{12}{23}{123}
  {2}{23}{123}     {2}{3}{13}{23}      {2}{3}{13}{23}{123}
  {3}{12}{13}      {2}{3}{13}{123}     {2}{12}{13}{23}{123}
  {3}{12}{23}      {2}{3}{23}{123}     {3}{12}{13}{23}{123}
  {3}{13}{23}      {2}{12}{13}{23}     {1}{2}{3}{12}{13}{23}
  {3}{13}{123}     {2}{12}{13}{123}    {1}{2}{3}{12}{13}{123}
  {3}{23}{123}     {2}{12}{23}{123}    {1}{2}{3}{12}{23}{123}
  {12}{13}{23}     {2}{13}{23}{123}    {1}{2}{3}{13}{23}{123}
  {12}{13}{123}    {3}{12}{13}{23}     {1}{2}{12}{13}{23}{123}
  {12}{23}{123}    {3}{12}{13}{123}    {1}{3}{12}{13}{23}{123}
  {13}{23}{123}    {3}{12}{23}{123}    {2}{3}{12}{13}{23}{123}
  {1}{2}{3}{123}   {3}{13}{23}{123}    {1}{2}{3}{12}{13}{23}{123}
  {1}{2}{12}{13}   {12}{13}{23}{123}
  {1}{2}{12}{23}   {1}{2}{3}{12}{13}
  {1}{2}{12}{123}  {1}{2}{3}{12}{23}
  {1}{2}{13}{23}   {1}{2}{3}{12}{123}
		

Crossrefs

The same with covering instead of connected is A059201, with unlabeled version A319637.
The non-T_0 version is A323818 (covering) or A326951 (not-covering).
The non-connected version is A326940, with unlabeled version A326946.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]],{n,0,3}]

Formula

Logarithmic transform of A059201.

A379707 Number of nonempty labeled antichains of subsets of [n] such that all subsets except possibly those of the largest size are disjoint.

Original entry on oeis.org

1, 2, 5, 19, 133, 2605, 1128365, 68731541392, 1180735736455875189405, 170141183460507927984536600089529165335, 7237005577335553223087828975127304180898559033209149835788539833222132944557
Offset: 0

Views

Author

John Tyler Rascoe, Dec 30 2024

Keywords

Examples

			For n < 4 all nonempty labeled antichains are counted. When n=6 antichains such as {{1,2,6},{1,4},{1,5}} are not counted, while {{1,2,4},{1,2,6},{3},{5}} is counted.
		

Crossrefs

Programs

  • Python
    from math import comb
    def rS2(n,k,m):
        if n < 1 and k < 1: return 1
        elif n < 1 or k < 1: return 0
        else: return k*rS2(n-1,k,m) + rS2(n-1,k-1,m)- comb(n-1,m)*rS2(n-1-m,k-1,m)
    def A229223(n,k):
        return sum(rS2(n,x,k) for x in range(n+1))
    def A379707(n):
        return 1+sum(sum(comb(n,i)*(2**comb(n-i,s)-1)*A229223(i,s-1) for i in range(n-s+1)) for s in range(1,n+1))

Formula

a(n) = 1 + Sum_{s=1..n} (Sum_{i=0..n-s} binomial(n,i) * (2^binomial(n-i,s) - 1) * A229223(i,s-1)).

A319643 Number of non-isomorphic weight-n strict multiset partitions whose dual is an antichain of (not necessarily distinct) multisets.

Original entry on oeis.org

1, 1, 3, 6, 15, 29, 82, 179, 504, 1302, 3822
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
From Gus Wiseman, Aug 15 2019: (Start)
Also the number of non-isomorphic T_0 weak antichains of weight n. The T_0 condition means that the dual is strict (no repeated edges). A weak antichain is a multiset of multisets, none of which is a proper submultiset of any other. For example, non-isomorphic representatives of the a(0) = 1 through a(4) = 15 T_0 weak antichains are:
{} {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}}
{{1},{1}} {{1,2,2}} {{1,2,2,2}}
{{1},{2}} {{1},{2,2}} {{1,1},{1,1}}
{{1},{1},{1}} {{1,1},{2,2}}
{{1},{2},{2}} {{1},{2,2,2}}
{{1},{2},{3}} {{1,2},{2,2}}
{{1},{2,3,3}}
{{1,3},{2,3}}
{{1},{1},{2,2}}
{{1},{2},{3,3}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
(End)

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{2}}
3: {{1,1,1}}
   {{1,2,3}}
   {{1},{1,1}}
   {{1},{2,2}}
   {{1},{2,3}}
   {{1},{2},{3}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{1},{2,2,2}}
   {{1},{2,3,4}}
   {{1,1},{2,2}}
   {{1,2},{3,3}}
   {{1,2},{3,4}}
   {{1},{2},{1,2}}
   {{1},{2},{2,2}}
   {{1},{2},{3,3}}
   {{1},{2},{3,4}}
   {{1},{2},{3},{4}}
		

Crossrefs

Showing 1-10 of 10 results.