cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A326853 BII-numbers of set-systems where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence gives all BII-numbers (defined below) of set-systems that are cointersecting, meaning their dual is pairwise intersecting.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.

Examples

			The sequence of all cointersecting set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  42: {{2},{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
		

Crossrefs

BII-numbers of pairwise intersecting set-systems are A326910.
Cointersecting set-systems are A327039, with covering version A327040.
The T_0 or costrict case is A327052.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]

A327020 Number of antichains covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 1, 2, 17, 1451, 3741198
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges, The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of sets, none of which is a subset of any other. This sequence counts antichains with union {1..n} whose dual is pairwise intersecting.

Examples

			The a(0) = 1 through a(4) = 17 antichains:
  {}  {{1}}  {{12}}  {{123}}         {{1234}}
                     {{12}{13}{23}}  {{12}{134}{234}}
                                     {{13}{124}{234}}
                                     {{14}{123}{234}}
                                     {{23}{124}{134}}
                                     {{24}{123}{134}}
                                     {{34}{123}{124}}
                                     {{123}{124}{134}}
                                     {{123}{124}{234}}
                                     {{123}{134}{234}}
                                     {{124}{134}{234}}
                                     {{12}{13}{14}{234}}
                                     {{12}{23}{24}{134}}
                                     {{13}{23}{34}{124}}
                                     {{14}{24}{34}{123}}
                                     {{123}{124}{134}{234}}
                                     {{12}{13}{14}{23}{24}{34}}
		

Crossrefs

Covering, intersecting antichains are A305844.
Covering, T1 antichains are A319639.
Cointersecting set-systems are A327039.
Covering, cointersecting set-systems are A327040.
Covering, cointersecting set-systems are A327051.
The non-covering version is A327057.
Covering, intersecting, T1 set-systems are A327058.
Unlabeled cointersecting antichains of multisets are A327060.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]

Formula

Inverse binomial transform of A327057.

A327062 Number of antichains of distinct sets covering a subset of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 5, 16, 81, 2595
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 16 antichains:
  {}  {}     {}         {}
      {{1}}  {{1}}      {{1}}
             {{2}}      {{2}}
             {{1,2}}    {{3}}
             {{1},{2}}  {{1,2}}
                        {{1,3}}
                        {{2,3}}
                        {{1},{2}}
                        {{1,2,3}}
                        {{1},{3}}
                        {{2},{3}}
                        {{1},{2,3}}
                        {{2},{1,3}}
                        {{3},{1,2}}
                        {{1},{2},{3}}
                        {{1,2},{1,3},{2,3}}
		

Crossrefs

Antichains are A000372.
The covering case is A319639.
The non-isomorphic multiset partition version is A319721.
The BII-numbers of these set-systems are the intersection of A326910 and A326853.
Set-systems whose dual is a weak antichain are A326968.
The unlabeled version is A327018.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

A327058 Number of pairwise intersecting set-systems covering n vertices whose dual is a weak antichain.

Original entry on oeis.org

1, 1, 1, 3, 155
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 3 set-systems:
  {}  {{1}}  {{12}}  {{123}}
                     {{12}{13}{23}}
                     {{12}{13}{23}{123}}
		

Crossrefs

Covering intersecting set-systems are A305843.
The BII-numbers of these set-systems are the intersection of A326910 and A326966.
Covering coantichains are A326970.
The non-covering version is A327059.
The unlabeled multiset partition version is A327060.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

Inverse binomial transform of A327059.

A327060 Number of non-isomorphic weight-n weak antichains of multisets where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 3, 4, 9, 11, 30, 42, 103, 194, 443
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. It is a weak antichain if no part is a proper submultiset of any other.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 multiset partitions:
  {}  {{1}}  {{11}}    {{111}}      {{1111}}        {{11111}}
             {{12}}    {{122}}      {{1122}}        {{11222}}
             {{1}{1}}  {{123}}      {{1222}}        {{12222}}
                       {{1}{1}{1}}  {{1233}}        {{12233}}
                                    {{1234}}        {{12333}}
                                    {{11}{11}}      {{12344}}
                                    {{12}{12}}      {{12345}}
                                    {{12}{22}}      {{11}{122}}
                                    {{1}{1}{1}{1}}  {{12}{222}}
                                                    {{33}{123}}
                                                    {{1}{1}{1}{1}{1}}
		

Crossrefs

Antichains are A000372.
The BII-numbers of these set-systems are the intersection of A326853 and A326704.
Cointersecting set-systems are A327039.
The set-system version is A327057, with covering case A327058.

A327806 Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 19, 5, 2, 0, 167, 84, 44, 17, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

An antichain is a set of nonempty sets, none of which is a subset of any other.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Triangle begins:
    1
    2   0
    5   1   0
   19   5   2   0
  167  84  44  17   0
		

Crossrefs

Except for the first column, same as the covering case A327350.
Column k = 0 is A014466 (antichains).
Column k = 1 is A048143 (clutters), if we assume A048143(0) = A048143(1) = 0.
Column k = 2 is A275307 (blobs), if we assume A275307(1) = A275307(2) = 0.
The unlabeled version is A327807.
The case for vertex connectivity exactly k is A327351.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]

A327059 Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.

Original entry on oeis.org

1, 2, 4, 10, 178
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. A weak antichain is a multiset of sets, none of which is a proper subset of any other.

Examples

			The a(0) = 1 through a(3) = 10 set-systems:
  {}  {}     {}      {}
      {{1}}  {{1}}   {{1}}
             {{2}}   {{2}}
             {{12}}  {{3}}
                     {{12}}
                     {{13}}
                     {{23}}
                     {{123}}
                     {{12}{13}{23}}
                     {{12}{13}{23}{123}}
		

Crossrefs

Intersecting set-systems are A051185.
The BII-numbers of these set-systems are the intersection of A326910 and A326966.
Set-systems whose dual is a weak antichain are A326968.
The covering version is A327058.
The unlabeled multiset partition version is A327060.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]

Formula

Binomial transform of A327058.

A327061 BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1

Views

Author

Gus Wiseman, Aug 18 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence gives all BII-numbers (defined below) of pairwise intersecting set-systems whose dual is also pairwise intersecting.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.

Examples

			The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  24: {{3},{1,3}}
  32: {{2,3}}
  34: {{2},{2,3}}
  40: {{3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
		

Crossrefs

The unlabeled multiset partition version is A319765.
Equals the intersection of A326853 and A326910.
The T_0 version is A326854.
These set-systems are counted by A327037 (covering) and A327038 (not covering).

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]

A327425 Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).

Original entry on oeis.org

1, 1, 1, 2, 6, 54
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
    {1}  {12}  {123}         {1234}
               {12}{13}{23}  {12}{134}{234}
                             {124}{134}{234}
                             {12}{13}{14}{234}
                             {123}{124}{134}{234}
                             {12}{13}{14}{23}{24}{34}
		

Crossrefs

The labeled version is A327020.
Unlabeled covering antichains are A261005.
The weighted version is A327060.
Showing 1-9 of 9 results.