A326853
BII-numbers of set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105
Offset: 1
The sequence of all cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
BII-numbers of pairwise intersecting set-systems are
A326910.
Cointersecting set-systems are
A327039, with covering version
A327040.
The T_0 or costrict case is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
A327020
Number of antichains covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 1, 2, 17, 1451, 3741198
Offset: 0
The a(0) = 1 through a(4) = 17 antichains:
{} {{1}} {{12}} {{123}} {{1234}}
{{12}{13}{23}} {{12}{134}{234}}
{{13}{124}{234}}
{{14}{123}{234}}
{{23}{124}{134}}
{{24}{123}{134}}
{{34}{123}{124}}
{{123}{124}{134}}
{{123}{124}{234}}
{{123}{134}{234}}
{{124}{134}{234}}
{{12}{13}{14}{234}}
{{12}{23}{24}{134}}
{{13}{23}{34}{124}}
{{14}{24}{34}{123}}
{{123}{124}{134}{234}}
{{12}{13}{14}{23}{24}{34}}
Covering, intersecting antichains are
A305844.
Covering, T1 antichains are
A319639.
Cointersecting set-systems are
A327039.
Covering, cointersecting set-systems are
A327040.
Covering, cointersecting set-systems are
A327051.
The non-covering version is
A327057.
Covering, intersecting, T1 set-systems are
A327058.
Unlabeled cointersecting antichains of multisets are
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
A327062
Number of antichains of distinct sets covering a subset of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
1, 2, 5, 16, 81, 2595
Offset: 0
The a(0) = 1 through a(3) = 16 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1,2}} {{3}}
{{1},{2}} {{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1,2,3}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
The non-isomorphic multiset partition version is
A319721.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326853.
Set-systems whose dual is a weak antichain are
A326968.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327058
Number of pairwise intersecting set-systems covering n vertices whose dual is a weak antichain.
Original entry on oeis.org
1, 1, 1, 3, 155
Offset: 0
The a(0) = 1 through a(3) = 3 set-systems:
{} {{1}} {{12}} {{123}}
{{12}{13}{23}}
{{12}{13}{23}{123}}
Covering intersecting set-systems are
A305843.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326966.
The non-covering version is
A327059.
The unlabeled multiset partition version is
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327060
Number of non-isomorphic weight-n weak antichains of multisets where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 3, 4, 9, 11, 30, 42, 103, 194, 443
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 multiset partitions:
{} {{1}} {{11}} {{111}} {{1111}} {{11111}}
{{12}} {{122}} {{1122}} {{11222}}
{{1}{1}} {{123}} {{1222}} {{12222}}
{{1}{1}{1}} {{1233}} {{12233}}
{{1234}} {{12333}}
{{11}{11}} {{12344}}
{{12}{12}} {{12345}}
{{12}{22}} {{11}{122}}
{{1}{1}{1}{1}} {{12}{222}}
{{33}{123}}
{{1}{1}{1}{1}{1}}
The BII-numbers of these set-systems are the intersection of
A326853 and
A326704.
Cointersecting set-systems are
A327039.
A327806
Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 19, 5, 2, 0, 167, 84, 44, 17, 0
Offset: 0
Triangle begins:
1
2 0
5 1 0
19 5 2 0
167 84 44 17 0
Except for the first column, same as the covering case
A327350.
Column k = 0 is
A014466 (antichains).
The case for vertex connectivity exactly k is
A327351.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327059
Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
1, 2, 4, 10, 178
Offset: 0
The a(0) = 1 through a(3) = 10 set-systems:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{12}} {{3}}
{{12}}
{{13}}
{{23}}
{{123}}
{{12}{13}{23}}
{{12}{13}{23}{123}}
Intersecting set-systems are
A051185.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326966.
Set-systems whose dual is a weak antichain are
A326968.
The unlabeled multiset partition version is
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327061
BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1
The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
The unlabeled multiset partition version is
A319765.
These set-systems are counted by
A327037 (covering) and
A327038 (not covering).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
A327425
Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 1, 2, 6, 54
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
{1} {12} {123} {1234}
{12}{13}{23} {12}{134}{234}
{124}{134}{234}
{12}{13}{14}{234}
{123}{124}{134}{234}
{12}{13}{14}{23}{24}{34}
Unlabeled covering antichains are
A261005.
Cf.
A006126,
A014466,
A055621,
A293606,
A293993,
A305844,
A307249,
A319639,
A326704,
A327057,
A327058,
A327358,
A327359.
Showing 1-9 of 9 results.
Comments