A327352
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0
Triangle begins:
1
1 1
4 1
14 4 1
83 59 23 2
1232 2551 2792 887 107 10 1
Row n = 3 counts the following antichains:
{} {{1,2,3}} {{1,2},{1,3},{2,3}}
{{1}} {{1,2},{1,3}}
{{2}} {{1,2},{2,3}}
{{3}} {{1,3},{2,3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327060
Number of non-isomorphic weight-n weak antichains of multisets where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 3, 4, 9, 11, 30, 42, 103, 194, 443
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 multiset partitions:
{} {{1}} {{11}} {{111}} {{1111}} {{11111}}
{{12}} {{122}} {{1122}} {{11222}}
{{1}{1}} {{123}} {{1222}} {{12222}}
{{1}{1}{1}} {{1233}} {{12233}}
{{1234}} {{12333}}
{{11}{11}} {{12344}}
{{12}{12}} {{12345}}
{{12}{22}} {{11}{122}}
{{1}{1}{1}{1}} {{12}{222}}
{{33}{123}}
{{1}{1}{1}{1}{1}}
The BII-numbers of these set-systems are the intersection of
A326853 and
A326704.
Cointersecting set-systems are
A327039.
A327356
Number of connected separable antichains of nonempty sets covering n vertices (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 40, 1365
Offset: 0
Non-isomorphic representatives of the a(4) = 40 set-systems:
{{1,2},{1,3,4}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]==1&]],{n,0,4}]
A327806
Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 19, 5, 2, 0, 167, 84, 44, 17, 0
Offset: 0
Triangle begins:
1
2 0
5 1 0
19 5 2 0
167 84 44 17 0
Except for the first column, same as the covering case
A327350.
Column k = 0 is
A014466 (antichains).
The case for vertex connectivity exactly k is
A327351.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327059
Number of pairwise intersecting set-systems covering a subset of {1..n} whose dual is a weak antichain.
Original entry on oeis.org
1, 2, 4, 10, 178
Offset: 0
The a(0) = 1 through a(3) = 10 set-systems:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{12}} {{3}}
{{12}}
{{13}}
{{23}}
{{123}}
{{12}{13}{23}}
{{12}{13}{23}{123}}
Intersecting set-systems are
A051185.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326966.
Set-systems whose dual is a weak antichain are
A326968.
The unlabeled multiset partition version is
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327424
Number of unlabeled, non-connected or empty antichains of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 4, 10, 33, 234, 16579
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(4) = 10 antichains:
{} {} {} {} {}
{{1},{2}} {{1},{2}} {{1},{2}}
{{1},{2,3}} {{1},{2,3}}
{{1},{2},{3}} {{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{1},{2,4},{3,4}}
{{1},{2,3},{2,4},{3,4}}
Partial sums of the positive-index terms of
A327426.
The labeled covering case is
A120338.
Unlabeled antichains that are either not connected or not covering are
A327437.
The case without empty antichains is
A327808.
A327438
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 3, 1, 6, 2, 1, 15, 7, 5, 2, 52, 53, 62, 31, 9, 1, 1
Offset: 0
Triangle begins:
1
1 1
3 1
6 2 1
15 7 5 2
52 53 62 31 9 1 1
The antichains counted in row n = 4 are the following:
0 {1234} {12}{134}{234} {123}{124}{134}{234}
{1} {12}{134} {123}{124}{134} {12}{13}{14}{23}{24}{34}
{12} {123}{124} {12}{13}{24}{34}
{123} {12}{13}{14} {12}{13}{14}{234}
{1}{2} {12}{13}{24} {12}{13}{14}{23}{24}
{1}{23} {12}{13}{234}
{12}{13} {12}{13}{14}{23}
{1}{234}
{12}{34}
{1}{2}{3}
{1}{2}{34}
{2}{13}{14}
{12}{13}{23}
{1}{2}{3}{4}
{4}{12}{13}{23}
A327808
Number of unlabeled, disconnected, nonempty antichains of subsets of {1..n}.
Original entry on oeis.org
0, 0, 1, 3, 9, 32, 233, 16578
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(4) = 9 antichains:
{{1},{2}} {{1},{2}} {{1},{2}}
{{1},{2,3}} {{1},{2,3}}
{{1},{2},{3}} {{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{2},{1,3},{1,4}}
{{4},{1,2},{1,3},{2,3}}
The labeled version is
A327354 - 1.
Unlabeled antichains that are either not connected or not covering are
A327437.
The version with empty antichains allowed is
A327424.
A327807
Triangle read by rows where T(n,k) is the number of unlabeled antichains of sets with n vertices and vertex-connectivity >= k.
Original entry on oeis.org
1, 2, 0, 4, 1, 0, 9, 3, 2, 0, 29, 14, 10, 6, 0, 209, 157, 128, 91, 54, 0
Offset: 0
Triangle begins:
1
2 0
4 1 0
9 3 2 0
29 14 10 6 0
209 157 128 91 54 0
Except for the first column, same as
A327358 (the covering case).
Showing 1-9 of 9 results.
Comments