A327351
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 4, 3, 2, 0, 30, 40, 27, 17, 0, 546, 1365, 1842, 1690, 1451, 0, 41334
Offset: 0
Triangle begins:
1
1 0
1 1 0
4 3 2 0
30 40 27 17 0
546 1365 1842 1690 1451 0
The version for vertex-connectivity >= k is
A327350.
The version for spanning edge-connectivity is
A327352.
The version for non-spanning edge-connectivity is
A327353, with covering case
A327357.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A327355
Number of antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 4, 14, 83, 1232, 84625, 109147467, 38634257989625
Offset: 0
The a(1) = 1 through a(3) = 14 antichains:
{} {} {}
{{1}} {{1}}
{{2}} {{2}}
{{1},{2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
The non-spanning edge-connectivity version is
A327354.
A327350
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 9, 5, 2, 0, 114, 84, 44, 17, 0, 6894, 6348, 4983, 3141, 1451, 0, 7785062
Offset: 0
Triangle begins:
1
1 0
2 1 0
9 5 2 0
114 84 44 17 0
6894 6348 4983 3141 1451 0
The antichains counted in row n = 3:
{123} {123} {123}
{1}{23} {12}{13} {12}{13}{23}
{2}{13} {12}{23}
{3}{12} {13}{23}
{12}{13} {12}{13}{23}
{12}{23}
{13}{23}
{1}{2}{3}
{12}{13}{23}
Column k = n - 1 is
A327020 (cointersecting antichains).
Negated first differences of rows are
A327351.
BII-numbers of antichains are
A326704.
Cf.
A003465,
A014466,
A120338,
A293606,
A293993,
A319639,
A323818,
A327112,
A327125,
A327334,
A327336,
A327352,
A327356,
A327357,
A327358.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327353
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
1 1
2 3
8 7 3 1
53 27 45 36 6
747 511 1497 2085 1540 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{} {{1}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{1},{2}} {{2}} {{1,2},{2,3}}
{{1},{3}} {{3}} {{1,3},{2,3}}
{{2},{3}} {{1,2}}
{{1},{2,3}} {{1,3}}
{{2},{1,3}} {{2,3}}
{{3},{1,2}} {{1,2,3}}
{{1},{2},{3}}
The version for spanning edge-connectivity is
A327352.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327354
Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 2, 8, 53, 747, 45156, 54804920, 19317457655317
Offset: 0
The a(1) = 1 through a(3) = 8 antichains:
{} {} {}
{{1},{2}} {{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
The spanning edge-connectivity version is
A327352.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Length[csm[#]]!=1&]],{n,0,4}]
A327357
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 1, 1, 4, 1, 3, 1, 30, 13, 33, 32, 6, 546, 421, 1302, 1915, 1510, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
0 1
1 1
4 1 3 1
30 13 33 32 6
546 421 1302 1915 1510 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{{1},{2,3}} {{1,2,3}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{2},{1,3}} {{1,2},{2,3}}
{{3},{1,2}} {{1,3},{2,3}}
{{1},{2},{3}}
The non-covering version is
A327353.
The version for spanning edge-connectivity is
A327352.
The specialization to simple graphs is
A327149, with unlabeled version
A327201.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}
A327437
Number of unlabeled antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 3, 6, 15, 52, 410, 32697
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{1},{2}} {{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{2,3}} {{1,2,3}}
{{1},{2},{3}} {{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{2},{1,3},{1,4}}
{{1,2},{1,3},{2,3}}
{{4},{1,2},{1,3},{2,3}}
A327438
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 3, 1, 6, 2, 1, 15, 7, 5, 2, 52, 53, 62, 31, 9, 1, 1
Offset: 0
Triangle begins:
1
1 1
3 1
6 2 1
15 7 5 2
52 53 62 31 9 1 1
The antichains counted in row n = 4 are the following:
0 {1234} {12}{134}{234} {123}{124}{134}{234}
{1} {12}{134} {123}{124}{134} {12}{13}{14}{23}{24}{34}
{12} {123}{124} {12}{13}{24}{34}
{123} {12}{13}{14} {12}{13}{14}{234}
{1}{2} {12}{13}{24} {12}{13}{14}{23}{24}
{1}{23} {12}{13}{234}
{12}{13} {12}{13}{14}{23}
{1}{234}
{12}{34}
{1}{2}{3}
{1}{2}{34}
{2}{13}{14}
{12}{13}{23}
{1}{2}{3}{4}
{4}{12}{13}{23}
Showing 1-8 of 8 results.
Comments