A120338
Number of disconnected antichain covers of a labeled n-set.
Original entry on oeis.org
0, 1, 4, 30, 546, 41334, 54502904, 19317020441804
Offset: 1
a(3)=4: the four disconnected covers are {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}} and {{1},{2},{3}}.
Column k = 0 of
A327351, if we assume a(0) = 1.
Column k = 0 of
A327357, if we assume a(0) = 1.
The non-covering version is
A327354.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&&Length[csm[#]]!=1&]],{n,4}] (* Gus Wiseman, Sep 26 2019 *)
A327352
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0
Triangle begins:
1
1 1
4 1
14 4 1
83 59 23 2
1232 2551 2792 887 107 10 1
Row n = 3 counts the following antichains:
{} {{1,2,3}} {{1,2},{1,3},{2,3}}
{{1}} {{1,2},{1,3}}
{{2}} {{1,2},{2,3}}
{{3}} {{1,3},{2,3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327426
Number of non-connected, unlabeled, antichain covers of {1..n} (vertex-connectivity 0).
Original entry on oeis.org
1, 1, 1, 2, 6, 23, 201, 16345
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 23 antichains:
{1}{2} {1}{23} {1}{234} {1}{2345}
{1}{2}{3} {12}{34} {12}{345}
{1}{2}{34} {1}{2}{345}
{1}{24}{34} {1}{23}{45}
{1}{2}{3}{4} {12}{35}{45}
{1}{23}{24}{34} {1}{25}{345}
{1}{2}{3}{45}
{1}{245}{345}
{1}{2}{35}{45}
{1}{2}{3}{4}{5}
{1}{24}{35}{45}
{1}{25}{35}{45}
{12}{34}{35}{45}
{1}{24}{25}{345}
{1}{23}{245}{345}
{1}{2}{34}{35}{45}
{1}{235}{245}{345}
{1}{23}{24}{35}{45}
{1}{25}{34}{35}{45}
{1}{23}{24}{25}{345}
{1}{234}{235}{245}{345}
{1}{24}{25}{34}{35}{45}
{1}{23}{24}{25}{34}{35}{45}
The non-covering version is
A327424 (partial sums).
A327353
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
1 1
2 3
8 7 3 1
53 27 45 36 6
747 511 1497 2085 1540 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{} {{1}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{1},{2}} {{2}} {{1,2},{2,3}}
{{1},{3}} {{3}} {{1,3},{2,3}}
{{2},{3}} {{1,2}}
{{1},{2,3}} {{1,3}}
{{2},{1,3}} {{2,3}}
{{3},{1,2}} {{1,2,3}}
{{1},{2},{3}}
The version for spanning edge-connectivity is
A327352.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327354
Number of disconnected or empty antichains of nonempty subsets of {1..n} (non-spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 2, 8, 53, 747, 45156, 54804920, 19317457655317
Offset: 0
The a(1) = 1 through a(3) = 8 antichains:
{} {} {}
{{1},{2}} {{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
The spanning edge-connectivity version is
A327352.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Length[csm[#]]!=1&]],{n,0,4}]
A327437
Number of unlabeled antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 3, 6, 15, 52, 410, 32697
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 15 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{1},{2}} {{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{2,3}} {{1,2,3}}
{{1},{2},{3}} {{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{2},{1,3},{1,4}}
{{1,2},{1,3},{2,3}}
{{4},{1,2},{1,3},{2,3}}
A327424
Number of unlabeled, non-connected or empty antichains of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 4, 10, 33, 234, 16579
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(4) = 10 antichains:
{} {} {} {} {}
{{1},{2}} {{1},{2}} {{1},{2}}
{{1},{2,3}} {{1},{2,3}}
{{1},{2},{3}} {{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{1},{2,4},{3,4}}
{{1},{2,3},{2,4},{3,4}}
Partial sums of the positive-index terms of
A327426.
The labeled covering case is
A120338.
Unlabeled antichains that are either not connected or not covering are
A327437.
The case without empty antichains is
A327808.
A327808
Number of unlabeled, disconnected, nonempty antichains of subsets of {1..n}.
Original entry on oeis.org
0, 0, 1, 3, 9, 32, 233, 16578
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(4) = 9 antichains:
{{1},{2}} {{1},{2}} {{1},{2}}
{{1},{2,3}} {{1},{2,3}}
{{1},{2},{3}} {{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{2},{1,3},{1,4}}
{{4},{1,2},{1,3},{2,3}}
The labeled version is
A327354 - 1.
Unlabeled antichains that are either not connected or not covering are
A327437.
The version with empty antichains allowed is
A327424.
Showing 1-8 of 8 results.
Comments