A327355
Number of antichains of nonempty subsets of {1..n} that are either non-connected or non-covering (spanning edge-connectivity 0).
Original entry on oeis.org
1, 1, 4, 14, 83, 1232, 84625, 109147467, 38634257989625
Offset: 0
The a(1) = 1 through a(3) = 14 antichains:
{} {} {}
{{1}} {{1}}
{{2}} {{2}}
{{1},{2}} {{3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
The non-spanning edge-connectivity version is
A327354.
A327426
Number of non-connected, unlabeled, antichain covers of {1..n} (vertex-connectivity 0).
Original entry on oeis.org
1, 1, 1, 2, 6, 23, 201, 16345
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 23 antichains:
{1}{2} {1}{23} {1}{234} {1}{2345}
{1}{2}{3} {12}{34} {12}{345}
{1}{2}{34} {1}{2}{345}
{1}{24}{34} {1}{23}{45}
{1}{2}{3}{4} {12}{35}{45}
{1}{23}{24}{34} {1}{25}{345}
{1}{2}{3}{45}
{1}{245}{345}
{1}{2}{35}{45}
{1}{2}{3}{4}{5}
{1}{24}{35}{45}
{1}{25}{35}{45}
{12}{34}{35}{45}
{1}{24}{25}{345}
{1}{23}{245}{345}
{1}{2}{34}{35}{45}
{1}{235}{245}{345}
{1}{23}{24}{35}{45}
{1}{25}{34}{35}{45}
{1}{23}{24}{25}{345}
{1}{234}{235}{245}{345}
{1}{24}{25}{34}{35}{45}
{1}{23}{24}{25}{34}{35}{45}
The non-covering version is
A327424 (partial sums).
A327424
Number of unlabeled, non-connected or empty antichains of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 1, 2, 4, 10, 33, 234, 16579
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(4) = 10 antichains:
{} {} {} {} {}
{{1},{2}} {{1},{2}} {{1},{2}}
{{1},{2,3}} {{1},{2,3}}
{{1},{2},{3}} {{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{1},{2,4},{3,4}}
{{1},{2,3},{2,4},{3,4}}
Partial sums of the positive-index terms of
A327426.
The labeled covering case is
A120338.
Unlabeled antichains that are either not connected or not covering are
A327437.
The case without empty antichains is
A327808.
A327438
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 3, 1, 6, 2, 1, 15, 7, 5, 2, 52, 53, 62, 31, 9, 1, 1
Offset: 0
Triangle begins:
1
1 1
3 1
6 2 1
15 7 5 2
52 53 62 31 9 1 1
The antichains counted in row n = 4 are the following:
0 {1234} {12}{134}{234} {123}{124}{134}{234}
{1} {12}{134} {123}{124}{134} {12}{13}{14}{23}{24}{34}
{12} {123}{124} {12}{13}{24}{34}
{123} {12}{13}{14} {12}{13}{14}{234}
{1}{2} {12}{13}{24} {12}{13}{14}{23}{24}
{1}{23} {12}{13}{234}
{12}{13} {12}{13}{14}{23}
{1}{234}
{12}{34}
{1}{2}{3}
{1}{2}{34}
{2}{13}{14}
{12}{13}{23}
{1}{2}{3}{4}
{4}{12}{13}{23}
A327808
Number of unlabeled, disconnected, nonempty antichains of subsets of {1..n}.
Original entry on oeis.org
0, 0, 1, 3, 9, 32, 233, 16578
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(4) = 9 antichains:
{{1},{2}} {{1},{2}} {{1},{2}}
{{1},{2,3}} {{1},{2,3}}
{{1},{2},{3}} {{1},{2},{3}}
{{1},{2,3,4}}
{{1,2},{3,4}}
{{1},{2},{3,4}}
{{1},{2},{3},{4}}
{{2},{1,3},{1,4}}
{{4},{1,2},{1,3},{2,3}}
The labeled version is
A327354 - 1.
Unlabeled antichains that are either not connected or not covering are
A327437.
The version with empty antichains allowed is
A327424.
Showing 1-5 of 5 results.
Comments