A327352 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0
Examples
Triangle begins: 1 1 1 4 1 14 4 1 83 59 23 2 1232 2551 2792 887 107 10 1 Row n = 3 counts the following antichains: {} {{1,2,3}} {{1,2},{1,3},{2,3}} {{1}} {{1,2},{1,3}} {{2}} {{1,2},{2,3}} {{3}} {{1,3},{2,3}} {{1,2}} {{1,3}} {{2,3}} {{1},{2}} {{1},{3}} {{2},{3}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{2},{3}}
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
Comments