A120338
Number of disconnected antichain covers of a labeled n-set.
Original entry on oeis.org
0, 1, 4, 30, 546, 41334, 54502904, 19317020441804
Offset: 1
a(3)=4: the four disconnected covers are {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}} and {{1},{2},{3}}.
Column k = 0 of
A327351, if we assume a(0) = 1.
Column k = 0 of
A327357, if we assume a(0) = 1.
The non-covering version is
A327354.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&&Length[csm[#]]!=1&]],{n,4}] (* Gus Wiseman, Sep 26 2019 *)
A327352
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0
Triangle begins:
1
1 1
4 1
14 4 1
83 59 23 2
1232 2551 2792 887 107 10 1
Row n = 3 counts the following antichains:
{} {{1,2,3}} {{1,2},{1,3},{2,3}}
{{1}} {{1,2},{1,3}}
{{2}} {{1,2},{2,3}}
{{3}} {{1,3},{2,3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327350
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 9, 5, 2, 0, 114, 84, 44, 17, 0, 6894, 6348, 4983, 3141, 1451, 0, 7785062
Offset: 0
Triangle begins:
1
1 0
2 1 0
9 5 2 0
114 84 44 17 0
6894 6348 4983 3141 1451 0
The antichains counted in row n = 3:
{123} {123} {123}
{1}{23} {12}{13} {12}{13}{23}
{2}{13} {12}{23}
{3}{12} {13}{23}
{12}{13} {12}{13}{23}
{12}{23}
{13}{23}
{1}{2}{3}
{12}{13}{23}
Column k = n - 1 is
A327020 (cointersecting antichains).
Negated first differences of rows are
A327351.
BII-numbers of antichains are
A326704.
Cf.
A003465,
A014466,
A120338,
A293606,
A293993,
A319639,
A323818,
A327112,
A327125,
A327334,
A327336,
A327352,
A327356,
A327357,
A327358.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327353
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
1 1
2 3
8 7 3 1
53 27 45 36 6
747 511 1497 2085 1540 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{} {{1}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{1},{2}} {{2}} {{1,2},{2,3}}
{{1},{3}} {{3}} {{1,3},{2,3}}
{{2},{3}} {{1,2}}
{{1},{2,3}} {{1,3}}
{{2},{1,3}} {{2,3}}
{{3},{1,2}} {{1,2,3}}
{{1},{2},{3}}
The version for spanning edge-connectivity is
A327352.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327358
Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 5, 3, 2, 0, 20, 14, 10, 6, 0, 180, 157, 128, 91, 54, 0
Offset: 0
Triangle begins:
1
1 0
2 1 0
5 3 2 0
20 14 10 6 0
180 157 128 91 54 0
Non-isomorphic representatives of the antichains counted in row n = 4:
{1234} {1234} {1234} {1234}
{1}{234} {12}{134} {123}{124} {12}{134}{234}
{12}{34} {123}{124} {12}{13}{234} {123}{124}{134}
{12}{134} {12}{13}{14} {12}{134}{234} {12}{13}{14}{234}
{123}{124} {12}{13}{24} {123}{124}{134} {123}{124}{134}{234}
{1}{2}{34} {12}{13}{234} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
{2}{13}{14} {12}{134}{234} {12}{13}{14}{234}
{12}{13}{14} {123}{124}{134} {12}{13}{14}{23}{24}
{12}{13}{24} {12}{13}{14}{23} {123}{124}{134}{234}
{1}{2}{3}{4} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
{12}{13}{234} {12}{13}{14}{234}
{12}{134}{234} {12}{13}{14}{23}{24}
{123}{124}{134} {123}{124}{134}{234}
{4}{12}{13}{23} {12}{13}{14}{23}{24}{34}
{12}{13}{14}{23}
{12}{13}{24}{34}
{12}{13}{14}{234}
{12}{13}{14}{23}{24}
{123}{124}{134}{234}
{12}{13}{14}{23}{24}{34}
Column k = n - 1 is
A327425 (cointersecting).
Negated first differences of rows are
A327359.
A327357
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 1, 1, 4, 1, 3, 1, 30, 13, 33, 32, 6, 546, 421, 1302, 1915, 1510, 693, 316, 135, 45, 10, 1
Offset: 0
Triangle begins:
1
0 1
1 1
4 1 3 1
30 13 33 32 6
546 421 1302 1915 1510 693 316 135 45 10 1
Row n = 3 counts the following antichains:
{{1},{2,3}} {{1,2,3}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{2},{1,3}} {{1,2},{2,3}}
{{3},{1,2}} {{1,3},{2,3}}
{{1},{2},{3}}
The non-covering version is
A327353.
The version for spanning edge-connectivity is
A327352.
The specialization to simple graphs is
A327149, with unlabeled version
A327201.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}
A327359
Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 2, 1, 2, 0, 6, 4, 4, 6, 0, 23, 29, 37, 37, 54, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
2 1 2 0
6 4 4 6 0
23 29 37 37 54 0
Row n = 4 counts the following antichains:
{1}{234} {14}{234} {134}{234} {1234}
{12}{34} {13}{24}{34} {13}{14}{234} {12}{134}{234}
{1}{2}{34} {14}{24}{34} {12}{13}{24}{34} {124}{134}{234}
{1}{24}{34} {14}{23}{24}{34} {13}{14}{23}{24}{34} {12}{13}{14}{234}
{1}{2}{3}{4} {123}{124}{134}{234}
{1}{23}{24}{34} {12}{13}{14}{23}{24}{34}
Cf.
A003465,
A006126,
A014466,
A048143,
A293993,
A323818,
A326704,
A327125,
A327334,
A327336,
A327350,
A327358.
A327356
Number of connected separable antichains of nonempty sets covering n vertices (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 40, 1365
Offset: 0
Non-isomorphic representatives of the a(4) = 40 set-systems:
{{1,2},{1,3,4}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]==1&]],{n,0,4}]
A327806
Triangle read by rows where T(n,k) is the number of antichains of sets with n vertices and vertex-connectivity >= k.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 19, 5, 2, 0, 167, 84, 44, 17, 0
Offset: 0
Triangle begins:
1
2 0
5 1 0
19 5 2 0
167 84 44 17 0
Except for the first column, same as the covering case
A327350.
Column k = 0 is
A014466 (antichains).
The case for vertex connectivity exactly k is
A327351.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327436
Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 1, 4, 29
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
{12} {12}{13} {12}{134} {12}{1345}
{12}{13}{14} {123}{145}
{12}{13}{24} {12}{13}{145}
{12}{13}{14}{23} {12}{13}{245}
{13}{24}{125}
{13}{124}{125}
{14}{123}{235}
{12}{13}{14}{15}
{12}{13}{14}{25}
{12}{13}{24}{35}
{12}{13}{14}{235}
{12}{13}{23}{145}
{12}{13}{45}{234}
{12}{14}{23}{135}
{12}{15}{134}{234}
{15}{23}{124}{134}
{15}{123}{124}{134}
{15}{123}{124}{234}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{15}{24}{34}
{12}{13}{14}{15}{234}
{12}{13}{14}{25}{234}
{12}{13}{14}{15}{23}{24}
{12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{15}{123}{124}{134}{234}
{12}{13}{14}{15}{23}{24}{34}
Cf.
A006602,
A014466,
A048143,
A261005,
A326704,
A326786,
A327112,
A327114,
A327426,
A327334,
A327336,
A327350,
A327351,
A327358.
Showing 1-10 of 11 results.
Comments