A327350 Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
1, 1, 0, 2, 1, 0, 9, 5, 2, 0, 114, 84, 44, 17, 0, 6894, 6348, 4983, 3141, 1451, 0, 7785062
Offset: 0
Examples
Triangle begins: 1 1 0 2 1 0 9 5 2 0 114 84 44 17 0 6894 6348 4983 3141 1451 0 The antichains counted in row n = 3: {123} {123} {123} {1}{23} {12}{13} {12}{13}{23} {2}{13} {12}{23} {3}{12} {13}{23} {12}{13} {12}{13}{23} {12}{23} {13}{23} {1}{2}{3} {12}{13}{23}
Crossrefs
Programs
-
Mathematica
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
Extensions
a(21) from Robert Price, May 24 2021
Comments