A327351
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 4, 3, 2, 0, 30, 40, 27, 17, 0, 546, 1365, 1842, 1690, 1451, 0, 41334
Offset: 0
Triangle begins:
1
1 0
1 1 0
4 3 2 0
30 40 27 17 0
546 1365 1842 1690 1451 0
The version for vertex-connectivity >= k is
A327350.
The version for spanning edge-connectivity is
A327352.
The version for non-spanning edge-connectivity is
A327353, with covering case
A327357.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A327426
Number of non-connected, unlabeled, antichain covers of {1..n} (vertex-connectivity 0).
Original entry on oeis.org
1, 1, 1, 2, 6, 23, 201, 16345
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 23 antichains:
{1}{2} {1}{23} {1}{234} {1}{2345}
{1}{2}{3} {12}{34} {12}{345}
{1}{2}{34} {1}{2}{345}
{1}{24}{34} {1}{23}{45}
{1}{2}{3}{4} {12}{35}{45}
{1}{23}{24}{34} {1}{25}{345}
{1}{2}{3}{45}
{1}{245}{345}
{1}{2}{35}{45}
{1}{2}{3}{4}{5}
{1}{24}{35}{45}
{1}{25}{35}{45}
{12}{34}{35}{45}
{1}{24}{25}{345}
{1}{23}{245}{345}
{1}{2}{34}{35}{45}
{1}{235}{245}{345}
{1}{23}{24}{35}{45}
{1}{25}{34}{35}{45}
{1}{23}{24}{25}{345}
{1}{234}{235}{245}{345}
{1}{24}{25}{34}{35}{45}
{1}{23}{24}{25}{34}{35}{45}
The non-covering version is
A327424 (partial sums).
A327358
Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 5, 3, 2, 0, 20, 14, 10, 6, 0, 180, 157, 128, 91, 54, 0
Offset: 0
Triangle begins:
1
1 0
2 1 0
5 3 2 0
20 14 10 6 0
180 157 128 91 54 0
Non-isomorphic representatives of the antichains counted in row n = 4:
{1234} {1234} {1234} {1234}
{1}{234} {12}{134} {123}{124} {12}{134}{234}
{12}{34} {123}{124} {12}{13}{234} {123}{124}{134}
{12}{134} {12}{13}{14} {12}{134}{234} {12}{13}{14}{234}
{123}{124} {12}{13}{24} {123}{124}{134} {123}{124}{134}{234}
{1}{2}{34} {12}{13}{234} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
{2}{13}{14} {12}{134}{234} {12}{13}{14}{234}
{12}{13}{14} {123}{124}{134} {12}{13}{14}{23}{24}
{12}{13}{24} {12}{13}{14}{23} {123}{124}{134}{234}
{1}{2}{3}{4} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
{12}{13}{234} {12}{13}{14}{234}
{12}{134}{234} {12}{13}{14}{23}{24}
{123}{124}{134} {123}{124}{134}{234}
{4}{12}{13}{23} {12}{13}{14}{23}{24}{34}
{12}{13}{14}{23}
{12}{13}{24}{34}
{12}{13}{14}{234}
{12}{13}{14}{23}{24}
{123}{124}{134}{234}
{12}{13}{14}{23}{24}{34}
Column k = n - 1 is
A327425 (cointersecting).
Negated first differences of rows are
A327359.
A327425
Number of unlabeled antichains of nonempty sets covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 1, 2, 6, 54
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 6 antichains:
{1} {12} {123} {1234}
{12}{13}{23} {12}{134}{234}
{124}{134}{234}
{12}{13}{14}{234}
{123}{124}{134}{234}
{12}{13}{14}{23}{24}{34}
Unlabeled covering antichains are
A261005.
Cf.
A006126,
A014466,
A055621,
A293606,
A293993,
A305844,
A307249,
A319639,
A326704,
A327057,
A327058,
A327358,
A327359.
A327436
Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 1, 4, 29
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
{12} {12}{13} {12}{134} {12}{1345}
{12}{13}{14} {123}{145}
{12}{13}{24} {12}{13}{145}
{12}{13}{14}{23} {12}{13}{245}
{13}{24}{125}
{13}{124}{125}
{14}{123}{235}
{12}{13}{14}{15}
{12}{13}{14}{25}
{12}{13}{24}{35}
{12}{13}{14}{235}
{12}{13}{23}{145}
{12}{13}{45}{234}
{12}{14}{23}{135}
{12}{15}{134}{234}
{15}{23}{124}{134}
{15}{123}{124}{134}
{15}{123}{124}{234}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{15}{24}{34}
{12}{13}{14}{15}{234}
{12}{13}{14}{25}{234}
{12}{13}{14}{15}{23}{24}
{12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{15}{123}{124}{134}{234}
{12}{13}{14}{15}{23}{24}{34}
Cf.
A006602,
A014466,
A048143,
A261005,
A326704,
A326786,
A327112,
A327114,
A327426,
A327334,
A327336,
A327350,
A327351,
A327358.
Showing 1-5 of 5 results.
Comments