A327359
Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 2, 1, 2, 0, 6, 4, 4, 6, 0, 23, 29, 37, 37, 54, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
2 1 2 0
6 4 4 6 0
23 29 37 37 54 0
Row n = 4 counts the following antichains:
{1}{234} {14}{234} {134}{234} {1234}
{12}{34} {13}{24}{34} {13}{14}{234} {12}{134}{234}
{1}{2}{34} {14}{24}{34} {12}{13}{24}{34} {124}{134}{234}
{1}{24}{34} {14}{23}{24}{34} {13}{14}{23}{24}{34} {12}{13}{14}{234}
{1}{2}{3}{4} {123}{124}{134}{234}
{1}{23}{24}{34} {12}{13}{14}{23}{24}{34}
Cf.
A003465,
A006126,
A014466,
A048143,
A293993,
A323818,
A326704,
A327125,
A327334,
A327336,
A327350,
A327358.
A327356
Number of connected separable antichains of nonempty sets covering n vertices (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 40, 1365
Offset: 0
Non-isomorphic representatives of the a(4) = 40 set-systems:
{{1,2},{1,3,4}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]==1&]],{n,0,4}]
Showing 1-2 of 2 results.
Comments