A327351
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 4, 3, 2, 0, 30, 40, 27, 17, 0, 546, 1365, 1842, 1690, 1451, 0, 41334
Offset: 0
Triangle begins:
1
1 0
1 1 0
4 3 2 0
30 40 27 17 0
546 1365 1842 1690 1451 0
The version for vertex-connectivity >= k is
A327350.
The version for spanning edge-connectivity is
A327352.
The version for non-spanning edge-connectivity is
A327353, with covering case
A327357.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A327350
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 9, 5, 2, 0, 114, 84, 44, 17, 0, 6894, 6348, 4983, 3141, 1451, 0, 7785062
Offset: 0
Triangle begins:
1
1 0
2 1 0
9 5 2 0
114 84 44 17 0
6894 6348 4983 3141 1451 0
The antichains counted in row n = 3:
{123} {123} {123}
{1}{23} {12}{13} {12}{13}{23}
{2}{13} {12}{23}
{3}{12} {13}{23}
{12}{13} {12}{13}{23}
{12}{23}
{13}{23}
{1}{2}{3}
{12}{13}{23}
Column k = n - 1 is
A327020 (cointersecting antichains).
Negated first differences of rows are
A327351.
BII-numbers of antichains are
A326704.
Cf.
A003465,
A014466,
A120338,
A293606,
A293993,
A319639,
A323818,
A327112,
A327125,
A327334,
A327336,
A327352,
A327356,
A327357,
A327358.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327358
Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 5, 3, 2, 0, 20, 14, 10, 6, 0, 180, 157, 128, 91, 54, 0
Offset: 0
Triangle begins:
1
1 0
2 1 0
5 3 2 0
20 14 10 6 0
180 157 128 91 54 0
Non-isomorphic representatives of the antichains counted in row n = 4:
{1234} {1234} {1234} {1234}
{1}{234} {12}{134} {123}{124} {12}{134}{234}
{12}{34} {123}{124} {12}{13}{234} {123}{124}{134}
{12}{134} {12}{13}{14} {12}{134}{234} {12}{13}{14}{234}
{123}{124} {12}{13}{24} {123}{124}{134} {123}{124}{134}{234}
{1}{2}{34} {12}{13}{234} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
{2}{13}{14} {12}{134}{234} {12}{13}{14}{234}
{12}{13}{14} {123}{124}{134} {12}{13}{14}{23}{24}
{12}{13}{24} {12}{13}{14}{23} {123}{124}{134}{234}
{1}{2}{3}{4} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
{12}{13}{234} {12}{13}{14}{234}
{12}{134}{234} {12}{13}{14}{23}{24}
{123}{124}{134} {123}{124}{134}{234}
{4}{12}{13}{23} {12}{13}{14}{23}{24}{34}
{12}{13}{14}{23}
{12}{13}{24}{34}
{12}{13}{14}{234}
{12}{13}{14}{23}{24}
{123}{124}{134}{234}
{12}{13}{14}{23}{24}{34}
Column k = n - 1 is
A327425 (cointersecting).
Negated first differences of rows are
A327359.
A327436
Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 1, 4, 29
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
{12} {12}{13} {12}{134} {12}{1345}
{12}{13}{14} {123}{145}
{12}{13}{24} {12}{13}{145}
{12}{13}{14}{23} {12}{13}{245}
{13}{24}{125}
{13}{124}{125}
{14}{123}{235}
{12}{13}{14}{15}
{12}{13}{14}{25}
{12}{13}{24}{35}
{12}{13}{14}{235}
{12}{13}{23}{145}
{12}{13}{45}{234}
{12}{14}{23}{135}
{12}{15}{134}{234}
{15}{23}{124}{134}
{15}{123}{124}{134}
{15}{123}{124}{234}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{15}{24}{34}
{12}{13}{14}{15}{234}
{12}{13}{14}{25}{234}
{12}{13}{14}{15}{23}{24}
{12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{15}{123}{124}{134}{234}
{12}{13}{14}{15}{23}{24}{34}
Cf.
A006602,
A014466,
A048143,
A261005,
A326704,
A326786,
A327112,
A327114,
A327426,
A327334,
A327336,
A327350,
A327351,
A327358.
Showing 1-4 of 4 results.
Comments