A327020 Number of antichains covering n vertices where every two vertices appear together in some edge (cointersecting).
1, 1, 1, 2, 17, 1451, 3741198
Offset: 0
Examples
The a(0) = 1 through a(4) = 17 antichains: {} {{1}} {{12}} {{123}} {{1234}} {{12}{13}{23}} {{12}{134}{234}} {{13}{124}{234}} {{14}{123}{234}} {{23}{124}{134}} {{24}{123}{134}} {{34}{123}{124}} {{123}{124}{134}} {{123}{124}{234}} {{123}{134}{234}} {{124}{134}{234}} {{12}{13}{14}{234}} {{12}{23}{24}{134}} {{13}{23}{34}{124}} {{14}{24}{34}{123}} {{123}{124}{134}{234}} {{12}{13}{14}{23}{24}{34}}
Crossrefs
Covering, intersecting antichains are A305844.
Covering, T1 antichains are A319639.
Cointersecting set-systems are A327039.
Covering, cointersecting set-systems are A327040.
Covering, cointersecting set-systems are A327051.
The non-covering version is A327057.
Covering, intersecting, T1 set-systems are A327058.
Unlabeled cointersecting antichains of multisets are A327060.
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,4}]
Formula
Inverse binomial transform of A327057.
Comments